Antonacopoulos / Chaudhuri / Pal | Pattern Recognition | Buch | 978-3-031-78168-1 | sack.de

Buch, Englisch, 473 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 768 g

Reihe: Lecture Notes in Computer Science

Antonacopoulos / Chaudhuri / Pal

Pattern Recognition

27th International Conference, ICPR 2024, Kolkata, India, December 1-5, 2024, Proceedings, Part V
Erscheinungsjahr 2024
ISBN: 978-3-031-78168-1
Verlag: Springer Nature Switzerland

27th International Conference, ICPR 2024, Kolkata, India, December 1-5, 2024, Proceedings, Part V

Buch, Englisch, 473 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 768 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-78168-1
Verlag: Springer Nature Switzerland


The multi-volume set of LNCS books with volume numbers 15301-15333 constitutes the refereed proceedings of the 27th International Conference on Pattern Recognition, ICPR 2024, held in Kolkata, India, during December 1–5, 2024. The 963 papers presented in these proceedings were carefully reviewed and selected from a total of 2106 submissions. They deal with topics such as Pattern Recognition; Artificial Intelligence; Machine Learning; Computer Vision; Robot Vision; Machine Vision; Image Processing; Speech Processing; Signal Processing; Video Processing; Biometrics; Human-Computer Interaction (HCI); Document Analysis; Document Recognition; Biomedical Imaging; Bioinformatics.

Antonacopoulos / Chaudhuri / Pal Pattern Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Multi-views Enhanced Spatio-Temporal Adaptive Transformer for Urban Traffic Prediction.- QPDet: Queuing People Detector for Aerial Images based on Adaptive Soft Label Assignment Strategy.- Supervised Mixup: Protecting the Likely Classes for Adversarial Robustness.- IFFusion: Illumination-free Fusion Network for Infrared and Visible Images.- Infrared and visible image fusion method based on learnable joint sparse low-rank separation representation.- Glare-SNet:Unsupervised Glare Suppression Balance Network.- Learning to Detect Lithography Defects in SEM Images.- Time-aware Intent Contrastive Learning  with Rare-class Sample Generator for Sequential Recommendation.- UAD-DPL: An Unknown Encrypted Attack Detection Method Based on Deep Prototype Learning.- Effects of Primary Capsule Shapes and Sizes in Capsule Networks.- ASwin-YOLO: Attention – Swin Transformers in YOLOv7 for Air-to-Air Unmanned Aerial Vehicle Detection.- Quaternion Squeeze and Excitation Networks: Mean , Variance , Skewness , Kurtosis As One Entity.- Dualswin-Ynet: A novel bimodal fusion network for ship detection in remote sensing images.- STMAE: Spatial Temporal Masked Auto-Encoder for Traffic Forecasting.- Bi-UNet:Bi-level Routing Attention Unet-shaped Network based on Explicit Visual Prompt.- Learning Dynamic Representations in Large Language Models for Evolving Data Streams.- Attend, Distill, Detect: Attention-aware Entropy Distillation for Anomaly Detection.- Pneumonia Classification in chest X-ray images using Explainable Slot-Attention Mechanism.- SegNet-ATT: Cross-Channel and Spatial Attention-Enhanced U-Net for Semantic Segmentation of Flood Affected Areas.- WaterMAS: Sharpness-Aware Maximization for Neural Network Watermarking.- Detection of Oral Potentially Malignant Lesions through Tranformer-based Segmentation Models.- ROI-Aware Dynamic Network Quantization for Neural Video Compression.- SecureCut: Federated Gradient Boosting Decision Trees with Efficient Machine Unlearning.- TVT: Training-free Vision Transformer Search on Tiny Datasets.- One-Shot Classification is Enough for Automatic Label Mapping.- Sustainable and Explainable Neural Network for Real-Time Time Series Classification.- StressViT: Splitting and Compressing Vision Transformer through Edge-Cloud Collaboration.- Effective Layer Pruning Through Similarity Metric Perspective.- A Lightweight Measure of Classification Difficulty from Application Dataset Characteristics.- Constant Time Decision Trees and Random Forest.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.