Antonacopoulos / Chaudhuri / Pal | Pattern Recognition | Buch | 978-3-031-78124-7 | sack.de

Buch, Englisch, Band 15332, 428 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 703 g

Reihe: Lecture Notes in Computer Science

Antonacopoulos / Chaudhuri / Pal

Pattern Recognition

27th International Conference, ICPR 2024, Kolkata, India, December 1-5, 2024, Proceedings, Part XXXII
Erscheinungsjahr 2024
ISBN: 978-3-031-78124-7
Verlag: Springer Nature Switzerland

27th International Conference, ICPR 2024, Kolkata, India, December 1-5, 2024, Proceedings, Part XXXII

Buch, Englisch, Band 15332, 428 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 703 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-78124-7
Verlag: Springer Nature Switzerland


The multi-volume set of LNCS books with volume numbers 15301-15333 constitutes the refereed proceedings of the 27th International Conference on Pattern Recognition, ICPR 2024, held in Kolkata, India, during December 1–5, 2024.

The 963 papers presented in these proceedings were carefully reviewed and selected from a total of 2106 submissions. They deal with topics such as Pattern Recognition; Artificial Intelligence; Machine Learning; Computer Vision; Robot Vision; Machine Vision; Image Processing; Speech Processing; Signal Processing; Video Processing; Biometrics; Human-Computer Interaction (HCI); Document Analysis; Document Recognition; Biomedical Imaging; Bioinformatics.

Antonacopoulos / Chaudhuri / Pal Pattern Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Pixel Embedding for Fractional Interpolation in Video Coding.- Scene Text Image Super-Resolution with CLIP Prior Guidance.- A Coverless Steganography of Face Privacy Protection with Diffusion Models.- CLIP-AGIQA: Boosting the Performance of AI-Generated Image Quality Assessment with CLIP.- CoDeiT: Contrastive Data-efficient Transformers for Deepfake Detection.- A Lightweight and High-Fidelity Model for Generalized Audio-Driven 3D Talking Face Synthesis.- Illuminating the Dark: Unpaired Retinex and FFT-Based Low-Light Image Enhancement.- PSTNet: A Progressive Sparse Transformer Network for Image Deraining.- Frequency Modulated Deformable Transformer for Underwater Image Enhancement.- Probing Attention-Driven Normalizing Flow Network for Low-Light Image Enhancement.- A Novel Encoder-Decoder Network with Multi-domain Information Fusion for Video Deblurring.- Self-Distilled Dual-Network with Pixel Screening Loss for Blind Image Deblurring.- Complementary Dual-Branch Network for Space-Time Video Super-Resolution.- SINGLE-IMAGE DRIVEN 3D VIEWPOINT TRAINING DATA AUGMENTATION FOR EFFECTIVE LABEL RECOGNITION.- Lightweight Single Image Super-Resolution Network Integrating CNN and Transformer.- A Synthetic Benchmarking Pipeline to Compare Camera Calibration Algorithms.- Arbitrary Clothing Style Transfer Based on Attention Mechanism.- Approximate Cuboidization of an Orthogonal Polyhedron: A Combinatorial Approach.- Enhancing Multi-Exposure High Dynamic Range Imaging with Overlapped Codebook for Improved Representation Learning.- Deformable Multi-Scale Network for Snow Removal in Video.- Fast Orthogonal Matching Pursuit through Successive Regression.- MPGTSRN: Scene Text Image Super-Resolution Guided by Multiple Visual-Semantic Prompts.- Connecting the Dots: Isolated Trails of Detected Narrow Rivers in Multispectral Images.- Peel and Pool: The Path to Mandala Perfection.- MCANet: Multimodal Caption Aware Training-free Video Anomaly Detection via Large Language Model.- 2by2: Weakly-Supervised Learning for Global Action Segmentation.- MDFIDNet: Multi Domain Feature Integration Denoising Network.- Dynamic Resolution Guidance for Facial Expression Recognition.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.