E-Book, Englisch, Band 0, 426 Seiten
Reihe: Woodhead Publishing Series in Electronic and Optical Materials
Anton-Haro / Dohler Machine-to-machine (M2M) Communications
1. Auflage 2014
ISBN: 978-1-78242-110-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Architecture, Performance and Applications
E-Book, Englisch, Band 0, 426 Seiten
Reihe: Woodhead Publishing Series in Electronic and Optical Materials
ISBN: 978-1-78242-110-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Part one of Machine-to-Machine (M2M) Communications covers machine-to-machine systems, architecture and components. Part two assesses performance management techniques for M2M communications. Part three looks at M2M applications, services, and standardization. Machine-to-machine communications refers to autonomous communication between devices or machines. This book serves as a key resource in M2M, which is set to grow significantly and is expected to generate a huge amount of additional data traffic and new revenue streams, underpinning key areas of the economy such as the smart grid, networked homes, healthcare and transportation. - Examines the opportunities in M2M for businesses - Analyses the optimisation and development of M2M communications - Chapters cover aspects of access, scheduling, mobility and security protocols within M2M communications
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Machine-to-machine (M2M) Communications: Achitecture, PerformanceandApplications;4
3;Copyright;5
4;Contents;6
5;List of contributors;12
6;Woodhead Publishing Series in Electronic and Optical Materials;14
7;Chapter 1: Introduction to machine-to-machine (M2M) communications;18
7.1;1.1. Introducing machine-to-machine;18
7.1.1;1.1.1. Machine-to-machine and the big data opportunity;18
7.1.2;1.1.2. Machine-to-machine technology landscape;21
7.1.3;1.1.3. Cellular M2M requirements;22
7.2;1.2. The machine-to-machine market opportunity;22
7.2.1;1.2.1. Return-of-investment (ROI) argumentation;22
7.2.2;1.2.2. Market overview;24
7.2.3;1.2.3. Market challenges and opportunities;27
7.3;1.3. Examples of commercial and experimental M2M network rollouts;28
7.3.1;1.3.1. Commercial rollouts;28
7.3.2;1.3.2. Pilots and field trials;30
7.4;1.4. Machine-to-machine standards and initiatives;31
7.4.1;1.4.1. Standards development organizations;31
7.4.2;1.4.2. Industrial associations and special interest groups (SIGs);34
7.4.3;1.4.3. Global industrial M2M initiatives;35
7.4.4;1.4.4. International innovation projects on M2M;35
7.5;1.5. Book rationale and overview;37
8;Part One: Architectures and standards;42
8.1;Chapter 2: Overview of ETSI machine-to-machine and oneM2M architectures;44
8.1.1;2.1. Introduction;44
8.1.2;2.2. Need and rationale for M2M standards;44
8.1.3;2.3. Standardized M2M architecture;48
8.1.4;2.4. Using M2M standards for ``vertical´´ domains, the example of the smart home;53
8.1.5;2.5. Conclusions and future trends for M2M standardization;60
8.1.6;References;62
8.2;Chapter 3: Overview of 3GPP machine-type communication standardization;64
8.2.1;3.1. Introduction;64
8.2.2;3.2. Pros and cons of M2M over cellular;65
8.2.2.1;3.2.1. Advantages of using cellular M2M;65
8.2.2.2;3.2.2. Challenges to facilitate cellular M2M;66
8.2.2.3;3.2.3. Suitability of current cellular solutions;67
8.2.3;3.3. MTC standardization in 3GPP;68
8.2.3.1;3.3.1. Technical requirements;68
8.2.3.1.1;3.3.1.1. The need for MTC user identification;68
8.2.3.1.2;3.3.1.2. The need for coverage improvement;69
8.2.3.1.3;3.3.1.3. Service exposure and enablement support;70
8.2.3.2;3.3.2. 3GPP MTC-related releases;70
8.2.3.3;3.3.3. MTC feature enhancements;72
8.2.3.3.1;3.3.3.1. Overload and congestion control at core network and RAN;72
8.2.3.3.2;3.3.3.2. Low-cost and enhanced coverage MTC UE for LTE;73
8.2.3.3.3;3.3.3.3. Other enhancements;73
8.2.4;3.4. Concluding remarks;74
8.2.5;References;76
8.3;Chapter 4: Lower-power wireless mesh networks for machine-to-machine communications using the IEEE802.15.4 standard;80
8.3.1;4.1. Introduction;80
8.3.2;4.2. The origins;80
8.3.2.1;4.2.1. Early low-power technologies;80
8.3.2.2;4.2.2. First demonstrations;81
8.3.2.3;4.2.3. IEEE802.15.4, the foundation;82
8.3.3;4.3. Challenges of low-power mesh networking;83
8.3.3.1;4.3.1. The unreliable nature of wireless;83
8.3.3.2;4.3.2. Low-power operation;85
8.3.3.3;4.3.3. Protocol considerations;85
8.3.4;4.4. The past;86
8.3.4.1;4.4.1. Proprietary solutions;86
8.3.4.2;4.4.2. ZigBee;86
8.3.4.3;4.4.3. Time synchronized mesh protocol;86
8.3.5;4.5. The present;87
8.3.5.1;4.5.1. Reliability, reliability, reliability;87
8.3.5.2;4.5.2. Industrial-grade standards;88
8.3.5.3;4.5.3. Internet integration;90
8.3.6;4.6. The future;91
8.3.6.1;4.6.1. Today's challenges;91
8.3.6.2;4.6.2. IETF 6TiSCH: combining IPv6 connectivity with industrial performance;91
8.3.6.3;4.6.3. Toward hybrid systems;92
8.3.7;4.7. Conclusion;92
8.3.8;Acknowledgments;93
8.3.9;References;93
8.4;Chapter 5: M2M interworking technologies and underlying market considerations;96
8.4.1;5.1. Interworking technologies for M2M communication networks: introduction;96
8.4.2;5.2. A panorama of heterogeneous technologies;96
8.4.2.1;5.2.1. Three-level architecture with non-IP devices;97
8.4.2.2;5.2.2. Two-level architecture with IP-enabled devices;98
8.4.2.3;5.2.3. Two-level architecture with non-IP devices;99
8.4.3;5.3. From capillary to IP networks;99
8.4.3.1;5.3.1. The gap between IP and capillary networks;99
8.4.3.2;5.3.2. The big IP funnel;100
8.4.4;5.4. Going up to the M2M cloud;101
8.4.4.1;5.4.1. Enabling M2M data exchange with web services;101
8.4.4.2;5.4.2. RESTful web services;101
8.4.4.3;5.4.3. MQTT;102
8.4.4.4;5.4.4. CoAP;103
8.4.4.5;5.4.5. XMPP;103
8.4.5;5.5. M2M market as internetworking enabler;104
8.4.5.1;5.5.1. Market actors;104
8.4.5.2;5.5.2. Preliminary CAPEX and OPEX considerations;105
8.4.5.3;5.5.3. The role of traditional operators;105
8.4.5.4;5.5.4. New M2M operators;105
8.4.5.5;5.5.5. M2M hardware vendors;106
8.4.5.6;5.5.6. M2M cloud/middleware and software application providers;107
8.4.6;5.6. Future trends;108
8.4.7;References;109
8.5;Chapter 6: Weightless machine-to-machine (M2M) wireless technology using TV white space: developing a standard;110
8.5.1;6.1. Why a new standard is needed;110
8.5.2;6.2. The need for spectrum;111
8.5.3;6.3. TV white space as a solution;112
8.5.4;6.4. Designing a new technology to fit M2M and white space;114
8.5.5;6.5. Weightless: the standard designed for M2M in shared spectrum;117
8.5.5.1;6.5.1. Applications;118
8.5.5.2;6.5.2. Security;119
8.5.5.3;6.5.3. MAC;119
8.5.5.4;6.5.4. PHY;120
8.5.6;6.6. Establishing a standards body;121
8.5.7;6.7. Conclusions;124
8.5.8;References;124
8.6;Chapter 7: Supporting machine-to-machine communications in long-term evolution networks;126
8.6.1;7.1. Introduction to M2M in LTE;126
8.6.2;7.2. Main technical challenges and existing solutions;127
8.6.2.1;7.2.1. Handling a very large number of devices;127
8.6.2.2;7.2.2. Low-energy-consumption solutions for MTC;129
8.6.2.3;7.2.3. Supporting low-cost MTC UEs;129
8.6.2.4;7.2.4. Providing extended coverage for MTC devices;131
8.6.3;7.3. Integrating MTC traffic into a human-centric system: a techno-economic perspective;132
8.6.3.1;7.3.1. The impact of a larger number of devices;133
8.6.3.2;7.3.2. The integration of LTE and capillary networks as a scalable solution;133
8.6.3.2.1;7.3.2.1. Overview of capillary networks;134
8.6.3.2.2;7.3.2.2. Techno-economic view on capillary networks;136
8.6.3.3;7.3.3. Technology migration and deployment strategies;136
8.6.4;7.4. Business implications for MTC in LTE;138
8.6.4.1;7.4.1. Is there a need for a change in operators' mindset?;139
8.6.4.2;7.4.2. The relationship between business challenges and engineers;139
8.6.4.3;7.4.3. Business models for M2M;141
8.6.5;7.5. Conclusions;143
8.6.6;Acknowledgments;144
8.6.7;References;144
9;Part Two: Access, scheduling, mobility and security protocols;148
9.1;Chapter 8: Traffic models for machine-to-machine (M2M) communications;150
9.1.1;8.1. Introduction;150
9.1.2;8.2. Generic methodology for traffic modeling;152
9.1.2.1;8.2.1. Trace recording;153
9.1.2.2;8.2.2. Traffic modeling;154
9.1.3;8.3. M2M traffic modeling;155
9.1.3.1;8.3.1. Use case: fleet management;156
9.1.3.2;8.3.2. Source traffic modeling;157
9.1.3.2.1;8.3.2.1. M2M traffic states;157
9.1.3.2.2;8.3.2.2. Source modeling via semi-Markov models;158
9.1.3.3;8.3.3. Aggregated traffic modeling;159
9.1.3.4;8.3.4. Source modeling for coordinated traffic via Markov-modulated Poisson processes;161
9.1.3.4.1;8.3.4.1. MMPPs: the basics;162
9.1.3.4.2;8.3.4.2. Coupling multiple MMPP processes;162
9.1.4;8.4. Model fitting from recorded traffic;164
9.1.4.1;8.4.1. B1: modeling individual devices as Markov chains;164
9.1.4.2;8.4.2. B2: modeling aggregated traffic;166
9.1.4.3;8.4.3. B3: modeling single Markov states;168
9.1.5;8.5. Conclusions;169
9.1.6;References;170
9.2;Chapter 9: Random access procedures and radio access network (RAN) overload control in standard and advanced long-term ev...;172
9.2.1;9.1. Introduction;172
9.2.2;9.2. E-UTRAN access reservation protocol;175
9.2.2.1;9.2.1. Random access preamble;175
9.2.2.2;9.2.2. Random access response;177
9.2.2.3;9.2.3. RRC connection request;178
9.2.2.4;9.2.4. Contention resolution;179
9.2.3;9.3. Extended access barring protocol;179
9.2.4;9.4. Alternative E-UTRAN load control principles;180
9.2.5;9.5. Overview of core network challenges and solutions for load control;181
9.2.6;9.6. Ongoing 3GPP work on load control;183
9.2.7;9.7. Resilience to overload through protocol re-engineering;184
9.2.8;9.8. Conclusion;187
9.2.9;Acknowledgments;187
9.2.10;References;187
9.3;Chapter 10: Packet scheduling strategies for machine-to-machine (M2M) communications over long-term evolution (LTE) cellu...;190
9.3.1;10.1. State of the art in M2M multiple access in legacy cellular systems;190
9.3.2;10.2. Signaling and scheduling limitations for M2M over LTE;191
9.3.2.1;10.2.1. Signaling in LTE scheduling;192
9.3.2.2;10.2.2. The LTE scheduling framework;193
9.3.3;10.3. Existing approaches for M2M scheduling over LTE;195
9.3.3.1;10.3.1. Group-based scheduling;195
9.3.3.2;10.3.2. Time granularity of scheduling;195
9.3.4;10.4. Novel approaches for M2M scheduling over LTE;196
9.3.4.1;10.4.1. QoS classes and LTE scheduling;196
9.3.4.2;10.4.2. Low-complexity scheduling and M2M bandwidth estimation;198
9.3.5;10.5. Technology innovations and challenges for M2M scheduling over wireless networks beyond 2020;200
9.3.5.1;10.5.1. Hybrid contention/reservation multiple access protocol for future M2M over cellular systems;201
9.3.6;10.6. Conclusions;202
9.3.7;References;202
9.4;Chapter 11: Mobility management for machine-to-machine (M2M) communications;204
9.4.1;11.1. Introduction;204
9.4.2;11.2. Use cases for M2M mobility;206
9.4.2.1;11.2.1. eHealth;207
9.4.2.2;11.2.2. Transportation;208
9.4.2.3;11.2.3. Smart buildings;208
9.4.3;11.3. Challenges of M2M mobility;209
9.4.4;11.4. Infrastructure considerations for mobility in M2M;210
9.4.4.1;11.4.1. Overview of M2M network reference architecture by standard organizations;210
9.4.4.1.1;11.4.1.1. IEEE 802 LAN/MAN standards;211
9.4.4.1.2;11.4.1.2. 3GPP MTC reference architecture;211
9.4.4.1.3;11.4.1.3. ETSI M2M reference architecture;211
9.4.4.1.4;11.4.1.4. oneM2M;212
9.4.4.2;11.4.2. Managing mobility with 3GPP EPC;213
9.4.4.3;11.4.3. Software-defined networks;215
9.4.4.4;11.4.4. Management and control of M2M devices;216
9.4.5;11.5. State-of-the-art solutions;217
9.4.5.1;11.5.1. Mobility support for IPv6;217
9.4.5.2;11.5.2. Cognitive M2M communication;218
9.4.5.3;11.5.3. Delay-tolerant networking;219
9.4.6;11.6. Summary and conclusions;219
9.4.7;Acknowledgments;220
9.4.8;References;220
9.5;Chapter 12: Advanced security taxonomy for machine-to-machine (M2M) communications in 5G capillary networks;224
9.5.1;12.1. Introduction;224
9.5.2;12.2. System architecture;226
9.5.2.1;12.2.1. Centralized architecture;227
9.5.2.2;12.2.2. Hierarchical architecture;227
9.5.2.3;12.2.3. Flat architecture;227
9.5.2.4;12.2.4. Security analysis;228
9.5.3;12.3. System assets;228
9.5.3.1;12.3.1. Binary data;229
9.5.3.2;12.3.2. Logical infrastructure;229
9.5.3.3;12.3.3. Device components;229
9.5.3.4;12.3.4. Security analysis;229
9.5.4;12.4. Security threats;229
9.5.4.1;12.4.1. Leak of service;230
9.5.4.2;12.4.2. Falsification of service;230
9.5.4.3;12.4.3. Denial of service;231
9.5.4.4;12.4.4. Time of service;231
9.5.4.5;12.4.5. Security analysis;231
9.5.5;12.5. Types of attacks;232
9.5.5.1;12.5.1. Ability;232
9.5.5.2;12.5.2. Activity;232
9.5.5.3;12.5.3. Class;232
9.5.5.4;12.5.4. Security analysis;233
9.5.6;12.6. Layers under attack;233
9.5.6.1;12.6.1. L0 hardware;233
9.5.6.2;12.6.2. L1 PHY layer;234
9.5.6.3;12.6.3. L2 MAC layer;235
9.5.6.4;12.6.4. L3 NTW layer;235
9.5.6.5;12.6.5. Security analysis;236
9.5.7;12.7. Security services;236
9.5.7.1;12.7.1. Confidentiality;236
9.5.7.2;12.7.2. Integrity;236
9.5.7.3;12.7.3. Availability;237
9.5.7.4;12.7.4. Freshness;237
9.5.8;12.8. Security protocols and algorithms;237
9.5.8.1;12.8.1. Security services;237
9.5.8.2;12.8.2. Security analysis;238
9.5.9;12.9. Concluding remarks;241
9.5.10;References;242
9.6;Chapter 13: Establishing security in machine-to-machine (M2M) communication devices and services;244
9.6.1;13.1. Introduction;244
9.6.2;13.2. Requirements and constraints for establishing security in M2M communications;245
9.6.2.1;13.2.1. Unattended devices;245
9.6.2.2;13.2.2. Impact of multitude;245
9.6.2.3;13.2.3. Communication overhead;245
9.6.2.4;13.2.4. Computation overhead;246
9.6.2.5;13.2.5. Spatial considerations;246
9.6.2.6;13.2.6. Many-to-many communications;247
9.6.2.7;13.2.7. Ecosystem liability considerations;247
9.6.2.8;13.2.8. Privacy aspects;247
9.6.3;13.3. Trust models in M2M ecosystems;248
9.6.3.1;13.3.1. Ad hoc application level security;248
9.6.3.2;13.3.2. M2M service provider-managed model;248
9.6.3.3;13.3.3. Trust manager security model;250
9.6.4;13.4. Protecting credentials through their lifetime in M2M systems;251
9.6.4.1;13.4.1. Security fundamentals;251
9.6.4.2;13.4.2. Protecting secrets in exposed equipment;251
9.6.4.3;13.4.3. Efficient security approach;252
9.6.4.4;13.4.4. Emerging alternative: physically unclonable functions;253
9.6.5;13.5. Security bootstrap in the M2M system;254
9.6.5.1;13.5.1. Preprovisioning of credentials and physical binding;254
9.6.5.2;13.5.2. Need for late-stage personalization, dynamic provisioning, and security administration;255
9.6.5.3;13.5.3. Remote bootstrapping of prepersonalized secure elements: late-stage personalization;255
9.6.5.4;13.5.4. Dynamic bootstrapping;256
9.6.5.5;13.5.5. Bootstrapping by derivation from pre-existing credentials;257
9.6.5.6;13.5.6. Out-of-band-assisted bootstrapping;257
9.6.5.7;13.5.7. Key pair generation in communicating objects;257
9.6.6;13.6. Bridging M2M security to the last mile: from WAN to LAN;259
9.6.6.1;13.6.1. Gateway security models;261
9.6.6.1.1;13.6.1.1. Security model with a gateway ending the IP communication path;261
9.6.6.1.2;13.6.1.2. Security model with a gateway using NAT;262
9.6.6.1.3;13.6.1.3. Security model with a border router device;262
9.6.6.2;13.6.2. Specific case: multihop capillary networks;262
9.6.6.3;13.6.3. Bridging different security layers;263
9.6.7;13.7. Conclusion;263
9.6.7.1;13.7.1. Further sources of information/advice;263
9.6.7.2;13.7.2. Future trends;264
10;Part Three: Network optimization for M2M communications;266
10.1;Chapter 14: Group-based optimization of large groups of devices in machine-to-machine (M2M) communications networks;268
10.1.1;14.1. Introduction;268
10.1.2;14.2. Mobile network optimizations for groups of M2M devices;269
10.1.3;14.3. Managing large groups of M2M subscriptions;271
10.1.4;14.4. Group-based messaging;274
10.1.5;14.5. Policy control for groups of M2M devices;278
10.1.6;14.6. Groups and group identifiers;282
10.1.7;14.7. Conclusions;283
10.1.8;References;283
10.2;Chapter 15: Optimizing power saving in cellular networks for machine-to-machine (M2M) communications;286
10.2.1;15.1. Introduction;286
10.2.2;15.2. Extended idle mode for M2M devices;287
10.2.2.1;15.2.1. Requirements;287
10.2.2.2;15.2.2. Optimizations in the non-access stratum;288
10.2.2.2.1;15.2.2.1. Extended periodic updating timers;288
10.2.2.2.2;15.2.2.2. Power-saving state;289
10.2.2.3;15.2.3. Optimizations in the access stratum;291
10.2.2.3.1;15.2.3.1. Extended DRX in idle mode;291
10.2.2.3.2;15.2.3.2. Power-saving state;292
10.2.2.4;15.2.4. Performances;295
10.2.3;15.3. Paging idle-mode M2M device in a power-efficient manner;296
10.2.3.1;15.3.1. Challenges;296
10.2.3.1.1;15.3.1.1. Requirements for paging M2M devices in a group manner;296
10.2.3.1.2;15.3.1.2. Limitation of current H2H paging mechanism;297
10.2.3.2;15.3.2. Group-based paging for MTC;298
10.2.3.2.1;15.3.2.1. Location-based paging in the NAS level;298
10.2.3.2.2;15.3.2.2. Three-layer paging in the AS level;300
10.2.3.3;15.3.3. Performance;301
10.2.4;15.4. Power saving for uplink data transmission;303
10.2.4.1;15.4.1. Requirements for signaling optimization;303
10.2.4.1.1;15.4.1.1. Analysis on M2M applications;303
10.2.4.1.2;15.4.1.2. Available application-based method;303
10.2.4.2;15.4.2. On-demand uplink transmission;304
10.2.4.3;15.4.3. Performances;305
10.2.5;15.5. Conclusions;306
10.2.6;References;306
10.3;Chapter 16: Increasing power efficiency in long-term evolution (LTE) networks for machine-to-machine (M2M) communications;308
10.3.1;16.1. Introduction;308
10.3.2;16.2. M2M scenarios;309
10.3.3;16.3. 3GPP status and work;311
10.3.3.1;16.3.1. LTE power consumption-related work in 3GPP;311
10.3.4;16.4. Introduction to basic LTE procedures;312
10.3.4.1;16.4.1. Initial access procedures;312
10.3.4.2;16.4.2. Idle and connected mode;313
10.3.4.3;16.4.3. UE mobility;314
10.3.4.3.1;16.4.3.1. Mobility in idle mode;314
10.3.4.3.2;16.4.3.2. Mobility in connected mode;314
10.3.4.4;16.4.4. Discontinuous reception (DRX);314
10.3.5;16.5. UE power consumption in LTE;315
10.3.5.1;16.5.1. Example power consumption model;316
10.3.5.1.1;16.5.1.1. Hardware model;316
10.3.5.1.2;16.5.1.2. State model;317
10.3.5.2;16.5.2. Way forward toward reduced power consumption;320
10.3.5.3;16.5.3. Reducing tail energy consumption;320
10.3.5.4;16.5.4. Extending the DRX cycle lengths;321
10.3.5.4.1;16.5.4.1. Results: aggressive optimization assumptions;321
10.3.5.4.2;16.5.4.2. Results: more realistic assumptions;322
10.3.5.5;16.5.5. Power-saving mode;325
10.3.5.6;16.5.6. Attach/detach;327
10.3.5.7;16.5.7. Other methods improving power efficiency;328
10.3.6;16.6. Discussion and conclusion;328
10.3.6.1;16.6.1. Discussion;328
10.3.6.2;16.6.2. Conclusion;329
10.3.6.3;References;330
10.4;Chapter 17: Energy and delay performance of machine-type communications (MTC) in long-term evolution-advanced (LTE-A);332
10.4.1;17.1. Introduction;332
10.4.1.1;17.1.1. Motivation and scope;332
10.4.1.2;17.1.2. Research background;332
10.4.2;17.2. Technology background;333
10.4.2.1;17.2.1. Review of LTE-A signaling;333
10.4.2.2;17.2.2. 3GPP evaluation methodology and system assumptions;335
10.4.3;17.3. Analytic performance assessment;337
10.4.3.1;17.3.1. Delay analysis;337
10.4.3.1.1;17.3.1.1. Expected delay of Msg3 and Msg4;338
10.4.3.1.2;17.3.1.2. Expected delay of Msg1 and Msg2 without collisions;338
10.4.3.1.3;17.3.1.3. Expected delay of Msg1 and Msg2 with collisions;339
10.4.3.2;17.3.2. Discussion;340
10.4.3.3;17.3.3. Energy consumption analysis;340
10.4.4;17.4. Performance assessment via simulation;342
10.4.4.1;17.4.1. Calibration of the simulator;343
10.4.5;17.5. Numerical results;345
10.4.6;17.6. Conclusion and further research directions;345
10.4.7;Appendix;348
10.4.7.1;A.1. Calculation of the average number of Msg3 and Msg4 transmissions;349
10.4.7.2;A.2. Calculation of the average number of Msg1/Msg2 transmissions (system without collisions);349
10.4.7.3;A.3. Calculation of the average time that the preamble is waiting for retransmission;350
10.4.7.4;A.4. Calculation of the average number of Msg1/Msg2 transmissions (system with collisions);350
11;Part Four: Business models and applications;354
11.1;Chapter 18: Business models for machine-to-machine (M2M) communications;356
11.1.1;18.1. Introduction;356
11.1.2;18.2. An overview of M2M from a commercial perspective;356
11.1.3;18.3. A brief history of M2M;357
11.1.3.1;18.3.1. The roots of M2M;357
11.1.3.2;18.3.2. The present;359
11.1.3.3;18.3.3. The future;360
11.1.4;18.4. The potential for M2M;361
11.1.5;18.5. The benefits of M2M;365
11.1.6;18.6. Business models for M2M;367
11.1.7;18.7. The return on investment;369
11.2;Chapter 19: Machine-to-machine (M2M) communications for smart cities;372
11.2.1;19.1. Introduction;372
11.2.2;19.2. Smart city technologies;373
11.2.2.1;19.2.1. M2M technology in the field;374
11.2.2.2;19.2.2. Big data back-end platform;375
11.2.2.3;19.2.3. Client interfaces;376
11.2.3;19.3. M2M smart city platform;377
11.2.3.1;19.3.1. Platform architecture;377
11.2.3.2;19.3.2. Open data APIs and app stores;377
11.2.3.3;19.3.3. Interaction with stakeholders;379
11.2.4;19.4. Financing M2M deployments in smart cities;380
11.2.4.1;19.4.1. Smart city rollout phases;380
11.2.4.2;19.4.2. Barriers of entry;381
11.2.4.3;19.4.3. Bootstrapping the smart city market;382
11.2.4.4;19.4.4. Smart city value chain;383
11.2.5;19.5. The ten smart city challenges;384
11.2.5.1;19.5.1. Political cycles and decision taking;385
11.2.5.2;19.5.2. Procurement and finances;386
11.2.5.3;19.5.3. Established and complex stakeholder system;386
11.2.5.4;19.5.4. Urban fab labs, data, and citizens;387
11.2.6;19.6. Conclusions;388
11.3;Chapter 20: Machine-to-machine (M2M) communications for e-health applications;392
11.3.1;20.1. Introduction;392
11.3.2;20.2. M2M network architecture;394
11.3.3;20.3. Enabling wireless technologies: standards and proprietary solutions;395
11.3.3.1;20.3.1. M2M area network;396
11.3.3.1.1;20.3.1.1. Open standards;396
11.3.3.1.2;20.3.1.2. Proprietary solutions;399
11.3.3.2;20.3.2. M2M access communication network;399
11.3.4;20.4. End-to-end solutions for M2M communication: connectivity and security;400
11.3.4.1;20.4.1. Technology integration for M2M communications;401
11.3.4.2;20.4.2. Test bed implementation of M2M solutions;402
11.3.4.3;20.4.3. Security and privacy issues;404
11.3.4.3.1;20.4.3.1. Challenges;404
11.3.4.3.2;20.4.3.2. Approaches;406
11.3.5;20.5. Existing projects;407
11.3.6;20.6. Concluding remarks;411
11.3.7;Acknowledgments;411
11.3.8;References;411
12;Index;416
Woodhead Publishing Series in Electronic and Optical Materials
1 Circuit analysis
J. E. Whitehouse 2 Signal processing in electronic communications: For engineers and mathematicians
M. J. Chapman, D. P. Goodall and N. C. Steele 3 Pattern recognition and image processing
D. Luo 4 Digital filters and signal processing in electronic engineering: Theory, applications, architecture, code
S. M. Bozic and R. J. Chance 5 Cable engineering for local area networks
B. J. Elliott 6 Designing a structured cabling system to ISO 11801: Cross-referenced to European CENELEC and American Standards
Second edition
B. J. Elliott 7 Microscopy techniques for materials science
A. Clarke and C. Eberhardt 8 Materials for energy conversion devices
Edited by C. C. Sorrell, J. Nowotny and S. Sugihara 9 Digital image processing: Mathematical and computational methods
Second edition
J. M. Blackledge 10 Nanolithography and patterning techniques in microelectronics
Edited by D. Bucknall 11 Digital signal processing: Mathematical and computational methods, software development and applications
Second edition
J. M. Blackledge 12 Handbook of advanced dielectric, piezoelectric and ferroelectric materials: Synthesis, properties and applications
Edited by Z.-G. Ye 13 Materials for fuel cells
Edited by M. Gasik 14 Solid-state hydrogen storage: Materials and chemistry
Edited by G. Walker 15 Laser cooling of solids
S. V. Petrushkin and V. V. Samartsev 16 Polymer electrolytes: Fundamentals and applications
Edited by C. A. C. Sequeira and D. A. F. Santos 17 Advanced piezoelectric materials: Science and technology
Edited by K. Uchino 18 Optical switches: Materials and design
Edited by S. J. Chua and B. Li 19 Advanced adhesives in electronics: Materials, properties and applications
Edited by M. O. Alam and C. Bailey 20 Thin film growth: Physics, materials science and applications
Edited by Z. Cao 21 Electromigration in thin films and electronic devices: Materials and reliability
Edited by C.-U. Kim 22 In situ characterization of thin film growth
Edited by G. Koster and G. Rijnders 23 Silicon-germanium (SiGe) nanostructures: Production, properties and applications in electronics
Edited by Y. Shiraki and N. Usami 24 High-temperature superconductors
Edited by X. G. Qiu 25 Introduction to the physics of nanoelectronics
S. G. Tan and M. B. A. Jalil 26 Printed films: Materials science and applications in sensors, electronics and photonics
Edited by M. Prudenziati and J. Hormadaly 27 Laser growth and processing of photonic devices
Edited by N. A. Vainos 28 Quantum optics with semiconductor nanostructures
Edited by F. Jahnke 29 Ultrasonic transducers: Materials and design for sensors, actuators and medical applications
Edited by K. Nakamura 30 Waste electrical and electronic equipment (WEEE) handbook
Edited by V. Goodship and A. Stevels 31 Applications of ATILA FEM software to smart materials: Case studies in designing devices
Edited by K. Uchino and J.-C. Debus 32 MEMS for automotive and aerospace applications
Edited by M. Kraft and N. M. White 33 Semiconductor lasers: Fundamentals and applications
Edited by A. Baranov and E. Tournie 34 Handbook of terahertz technology for imaging, sensing and communications
Edited by D. Saeedkia 35 Handbook of solid-state lasers: Materials, systems and applications
Edited by B. Denker and E. Shklovsky 36 Organic light-emitting diodes (OLEDs): Materials, devices and applications
Edited by A. Buckley 37 Lasers for medical applications: Diagnostics, therapy and surgery
Edited by H. Jelínková 38 Semiconductor gas sensors
Edited by R. Jaaniso and O. K. Tan 39 Handbook of organic materials for optical and (opto)electronic devices: Properties and applications
Edited by O. Ostroverkhova 40 Metallic films for electronic, optical and magnetic applications: Structure, processing and properties
Edited by K. Barmak and K. Coffey 41 Handbook of laser welding technologies
Edited by S. Katayama 42 Nanolithography: The art of fabricating nanoelectronic and nanophotonic devices and systems
Edited by M. Feldman 43 Laser spectroscopy for sensing: Fundamentals, techniques and applications
Edited by M. Baudelet 44 Chalcogenide glasses: Preparation, properties and applications
Edited by J.-L. Adam and X. Zhang 45 Handbook of MEMS for wireless and mobile applications
Edited by D. Uttamchandani 46 Subsea optics and imaging
Edited by J. Watson and O. Zielinski 47 Carbon nanotubes and graphene for photonic applications
Edited by S. Yamashita, Y. Saito and J. H. Choi 48 Optical biomimetics: Materials and applications
Edited by M. Large 49 Optical thin films and coatings
Edited by A. Piegari and F. Flory 50 Computer design of diffractive optics
Edited by V. A. Soifer 51 Smart sensors and MEMS: Intelligent devices and microsystems for industrial applications
Edited by S. Nihtianov and A. Luque 52 Fundamentals of femtosecond optics
S. A. Kozlov and V. V. Samartsev 53 Nanostructured semiconductor oxides for the next generation of electronics and functional devices: Properties and applications
S. Zhuiykov 54 Nitride semiconductor light-emitting diodes (LEDs): Materials, technologies and applications
Edited by J. J. Huang, H. C. Kuo and S. C. Shen 55 Sensor technologies for civil infrastructures
Volume 1: Sensing hardware and data collection methods for performance assessment
Edited by M....