Annema | Feed-Forward Neural Networks | Buch | 978-1-4613-5990-6 | sack.de

Buch, Englisch, Band 314, 238 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 394 g

Reihe: The Springer International Series in Engineering and Computer Science

Annema

Feed-Forward Neural Networks

Vector Decomposition Analysis, Modelling and Analog Implementation
Softcover Nachdruck of the original 1. Auflage 1995
ISBN: 978-1-4613-5990-6
Verlag: Springer US

Vector Decomposition Analysis, Modelling and Analog Implementation

Buch, Englisch, Band 314, 238 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 394 g

Reihe: The Springer International Series in Engineering and Computer Science

ISBN: 978-1-4613-5990-6
Verlag: Springer US


presents a novel method for the mathematical analysis of neural networks that learn according to the back-propagation algorithm. The book also discusses some other recent alternative algorithms for hardware implemented perception-like neural networks. The method permits a simple analysis of the learning behaviour of neural networks, allowing specifications for their building blocks to be readily obtained.
Starting with the derivation of a specification and ending with its hardware implementation, analog hard-wired, feed-forward neural networks with on-chip back-propagation learning are designed in their entirety. On-chip learning is necessary in circumstances where fixed weight configurations cannot be used. It is also useful for the elimination of most mis-matches and parameter tolerances that occur in hard-wired neural network chips.
Fully analog neural networks have several advantages over other implementations: low chip area, low power consumption, and high speed operation.
is an excellent source of reference and may be used as a text for advanced courses.
Annema Feed-Forward Neural Networks jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction.- 2 The Vector Decomposition Method.- 3 Dynamics of Single Layer Nets.- 4 Unipolar Input Signals in Single-Layer Feed-Forward Neural Networks.- 5 Cross-talk in Single-Layer Feed-Forward Neural Networks.- 6 Precision Requirements for Analog Weight Adaptation Circuitry for Single-Layer Nets.- 7 Discretization of Weight Adaptations in Single-Layer Nets.- 8 Learning Behavior and Temporary Minima of Two-Layer Neural Networks.- 9 Biases and Unipolar Input signals for Two-Layer Neural Networks.- 10 Cost Functions for Two-Layer Neural Networks.- 11 Some issues for f’ (x).- 12 Feed-forward hardware.- 13 Analog weight adaptation hardware.- 14 Conclusions.- Nomenclature.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.