E-Book, Englisch, Band 2011, 302 Seiten, eBook
Reihe: Lecture Notes in Mathematics
Andrews / Hopper The Ricci Flow in Riemannian Geometry
Erscheinungsjahr 2010
ISBN: 978-3-642-16286-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem
E-Book, Englisch, Band 2011, 302 Seiten, eBook
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-642-16286-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1 Introduction.- 2 Background Material.- 3 Harmonic Mappings.- 4 Evolution of the Curvature.- 5 Short-Time Existence.- 6 Uhlenbeck’s Trick.- 7 The Weak Maximum Principle.- 8 Regularity and Long-Time Existence.- 9 The Compactness Theorem for Riemannian Manifolds.- 10 The F-Functional and Gradient Flows.- 11 The W-Functional and Local Noncollapsing.- 12 An Algebraic Identity for Curvature Operators.- 13 The Cone Construction of Böhm and Wilking.- 14 Preserving Positive Isotropic Curvature.- 15 The Final Argument