Andres / Górniewicz | Topological Fixed Point Principles for Boundary Value Problems | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 1, 761 Seiten, eBook

Reihe: Topological Fixed Point Theory and Its Applications

Andres / Górniewicz Topological Fixed Point Principles for Boundary Value Problems


2003
ISBN: 978-94-017-0407-6
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 1, 761 Seiten, eBook

Reihe: Topological Fixed Point Theory and Its Applications

ISBN: 978-94-017-0407-6
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark



Andres / Górniewicz Topological Fixed Point Principles for Boundary Value Problems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Preface. Scheme for the relationship of single sections. I: Theoretical Background. I.1. Structure of locally convex spaces. I.2. ANR-spaces and AR-spaces. I.3. Multivalued mappings and their selections. I.4. Admissible mappings. I.5. Special classes of admissible mappings. I.6. Lefschetz fixed point theorem for admissible mappings. I.7. Lefschetz fixed point theorem for condensing mappings. I.8. Fixed point index and topological degree for admissible maps in locally convex spaces. I.9. Noncompact case. I.10. Nielsen number. I.11. Nielsen number: Noncompact case. I.12. Remarks and comments. II: General Principles. II.1 Topological structure of fixed point sets: Aronszajn Browder Gupta-type results. II.2. Topological structure of fixed point sets: inverse limit method. II.3. Topological dimension of fixed point sets. II.4. Topological essentiality. II.5. Relative theories of Lefschetz and Nielsen. II.6. Periodic point principles. II.7. Fixed point index for condensing maps. II.8. Approximation method for the fixed point theory of multivalued mappings. II.9. Topological degree defined by means of approximation methods. II.10. Continuation principles based on a fixed point index. II.11. Continuation principles based on a coincidence index. II.12. Remarks and comments. III: Application to Differential Equations and Inclusions. III.1. Topological approach to differential equations and inclusions. III.2. Topological structure of solution sets: initial value problems. III.3. Topological structure of solution sets: boundary value problems. III.4. Poincaré operators. III.5. Existence results. III.6. Multiplicity results. III.7. Wazewski-type results. III.8. Bounding and guiding functions approach. III.9. Infinitely many subharmonics. III.10. Almost-periodic problems. III.11. Some further applications. III.13.Remarks and comments. Appendices. A.1. Almost-periodic single-valued and multivalued functions. A.2. Derivo-periodic single-valued and multivalued functions. A.3. Fractals and multivalued fractals. References. Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.