E-Book, Englisch, Band 5, 292 Seiten, eBook
Reihe: RILEM Bookseries
Andrade / Mancini Modelling of Corroding Concrete Structures
1. Auflage 2011
ISBN: 978-94-007-0677-4
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the Joint fib-RILEM Workshop held in Madrid, Spain, 22–23 November 2010
E-Book, Englisch, Band 5, 292 Seiten, eBook
Reihe: RILEM Bookseries
ISBN: 978-94-007-0677-4
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
These are the papers presented at the Fib-RILEM workshop held in Madrid, Spain, in November 2010. The assessment of deterioration and aging of concrete structures, most commonly through reinforcement corrosion, is not considered in current structural codes or standards. Some guidelines manuals exist, and research has been done, but there is as yet no accepted methodology nor models that could be used by engineers.
This book deals with all aspects related to modelling of corroding structures and provides state-of-the-art information on structural models for corroding structures.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Table of Contents;6
2;Foreword;8
3;Study of the Interaction between Loading and Rebar Corrosion in R.C. Ties;10
3.1;Introduction;10
3.2;Test Specimens Description;11
3.3;Cyclic Loading and Corrosion Mechanism;12
3.4;Test Procedure;13
3.5;Transversal and Longitudinal Crack Opening;15
3.6;Conclusions;22
3.7;References;23
4;Prediction of Corrosion Rate in RC Structures - A Critical Review;24
4.1;Introduction;24
4.2;Existing Corrosion Rate Prediction Models;26
4.2.1;Alonso et al.’s model (1988);26
4.2.2;Yalcyn and Ergun’s model (1996);27
4.2.3;Katwan et al.’s model (1996);28
4.2.4;Liu and Weyers’ model (1998);29
4.2.5;Duracrete model (1998);30
4.2.6;Vu and Stewart’s model (2000);30
4.2.7;Scott’s model (2004);32
4.2.8;Martinez and Andrade’s model (2009);33
4.2.9;Models based on electrochemical principles of corrosion;34
4.3;Summary of Salient Aspects to Be Considered When Developing a Corrosion Rate Prediction Model;35
4.3.1;Time-variant nature of corrosion rate;35
4.3.2;Influence of cover cracking on corrosion rate;36
4.3.3;Corrosion rate measurement techniques;38
4.3.4;Validation of models;39
4.3.5;Accounting for variability;39
4.4;Future Outlook (Ongoing Study);40
4.4.1;Objectives and expected outcomes of the study;40
4.4.2;Framework and scope of the study;41
4.5;Closure;42
4.6;References;43
5;Proposal of Corrosion Rate Analytical Model of Reinforced Concrete with Crack;47
5.1;Introduction;47
5.2;Construction of Model;49
5.2.1;Flow of model;49
5.2.2;Setting of steel element and definition of corrosion cell as used in this paper;49
5.2.3;Analysis of corrosion current;50
5.3;Experiment for Verification of Model Using Mortar Specimen;51
5.3.1;Experimental procedure;51
5.3.2;Measured input data;55
5.3.3;Analytical result;58
5.4;Influence of Various Conditions on Analyzed Corrosion Rate;63
5.4.1;Existence of crack;63
5.4.2;Humidity;63
5.4.3;Water-cement ratio;64
5.5;Experiment for Verification Using Concrete Specimen;65
5.5.1;Experimental procedure;65
5.5.2;Analytical result;67
5.6;Conclusions;70
5.7;Acknowledgments;71
5.8;References;71
6;Reinforcement Corrosion Rate in Cracked Areas of RC-Members Subjected to Sustained Load;73
6.1;Introduction;73
6.2;Experimental Program;76
6.2.1;Test specimens;76
6.2.2;Initiation and acceleration of the process of reinforcement corrosion;79
6.2.3;Measuring of reinforcement corrosion parameters;79
6.3;Measured Values of Corrosion Parameters;81
6.3.1;Corrosion rates of reinforcement in beam and slab specimens;81
6.3.2;Relation of half-cell potential and corrosion rate in beams;84
6.3.3;Relation of HCP and corrosion rate in slabs;85
6.4;Depth of Reinforcement Corrosion According to Results of Measurements of Corrosion Rate;86
6.5;Observations and Discussion;88
6.6;Conclusion;89
6.7;Acknowledgments;90
6.8;References;90
7;SBRA Model for Corrosion Initiation of Concrete Structures;92
7.1;Introduction;92
7.2;Chloride Ingress Induced Deterioration;94
7.2.1;Service life;94
7.2.2;Mechanism of chloride ingress and Transportation Model;94
7.2.3;Performance assessment;95
7.2.4;2-D Finite Diffusion model with crack effect;95
7.3;SBRA Application;96
7.4;Probabilistic 2-D Diffusion Analysis;97
7.4.1;Precision of Monte Carlo simulation;100
7.5;Results;101
7.6;Discussion;104
7.7;Conclusions;104
7.8;References;105
8;The Condition Assessment of Reinforced Concrete Lining of Exploration Galleries Exposed to Chemically Aggressive Environment and Its Further Durability Prediction;108
8.1;Introduction;108
8.2;Specification of the Environment;110
8.3;Principle of Implemented Analysis;111
8.3.1;Physico-mechanical parameters:;112
8.3.2;Physiochemical assessment:;112
8.4;Results of Executed Analysis;113
8.4.1;Summary of physico-mechanical characteristics of reinforced concrete:;114
8.4.2;Results summary of physical and chemical analysis:;114
8.5;Shotcrete Durability Prediction;115
8.5.1;Prediction of concrete durability – locations with penetrating non-aggressive or slightly aggressive waters;115
8.5.2;Prediction of concrete durability – locations with penetrating semi aggressive waters;116
8.6;Conclusion;116
8.7;Acknowledgements;118
8.8;References;118
9;Systematic Laboratory Test on Structural Performance of Corroded Reinforced Concrete and Its Utilization in Practice;119
9.1;Introduction;120
9.1.1;Background;120
9.1.2;Significance and objective of systematic laboratory test;120
9.2;Experimental Procedure;122
9.2.1;RC beam specimen;122
9.2.2;Experimental parameters;123
9.2.3;Simulating method of corrosion;123
9.2.4;Measurements of corrosion;124
9.2.5;Loading test procedure and measurements;124
9.3;Results and Discussion;124
9.3.1;Measurement of corroded reinforcement and failure mode;124
9.3.2;Load-deflection curve;126
9.3.3;Yield load;127
9.3.4;Ultimate load;128
9.4;Conclusions;129
9.5;Acknowledgements;130
9.6;References;130
10;Comparison of Resistance to Chloride Penetration of Different Types of Concrete through Migration and Ponding Tests;131
10.1;Introduction;131
10.2;Experimental Procedure;132
10.3;Results and Discussion;134
10.4;Conclusions;140
10.5;Acknowledgements;141
10.6;References;141
11;High Strength Steels Fracture Toughness Variation by the Media;142
11.1;Introduction;142
11.2;Experimental Method;144
11.2.1;Materials;144
11.2.2;Methodology;144
11.3;Results;145
11.4;Discussion;146
11.5;Conclusions;150
11.6;Acknowledgments;151
11.7;References;151
12;High pH Corrosion of Prestressing Steel in Segregated Grout;152
12.1;Introduction;152
12.2;Case Study;153
12.3;Materials and Experimental Methods;155
12.4;Results and Discussion;156
12.5;Conclusions;162
12.6;Acknowledgements;163
12.7;References;163
13;Loading Test of RC Beam Bridge Built 80 Years Ago in Japanese Coastal Area;164
13.1;Introduction;164
13.2;Outline of Tested Bridge;165
13.3;Degrading Condition;166
13.3.1;Visual inspection;166
13.3.2;Chloride content;167
13.4;Loading Test;168
13.4.1;Test method;168
13.4.2;Test results;169
13.5;Destructive Test after Loading;172
13.5.1;Testing of concrete cores and rebars;172
13.5.2;Inspection of bar arrangement;172
13.5.3;Corrosion rate;173
13.6;Finite Element Analysis;176
13.6.1;Analytical method;176
13.6.2;Analytical results;179
13.7;Conclusions;181
13.8;Acknowledgements;182
13.9;References;182
14;Observations on the Morphology of Oxide Formation due to Reinforcement Corrosion;183
14.1;Introduction;183
14.2;Experimental;185
14.3;Results;186
14.4;Discussion;192
14.5;Conclusions;195
14.6;Acknowledgements;196
14.7;References;196
15;Severely Corroded Reinforced Concrete with Cover Cracking: Part 1. Crack Initiation and Propagation;198
15.1;Introduction;198
15.2;Experimental Setup;199
15.3;Results;202
15.3.1;Corrosion level 1;202
15.3.2;Corrosion level 2;203
15.3.3;Corrosion level 3;204
15.4;Numerical Modelling;204
15.4.1;Results;206
15.5;Conclusions;207
15.6;References;208
16;Severely Corroded Reinforced Concrete with Cover Cracking: Part 2. Anchorage Capacity;209
16.1;Introduction;209
16.2;Experimental Setup;210
16.3;Numerical Modelling;212
16.4;Results;214
16.4.1;Specimens with non corroded stirrups (Type A);216
16.4.2;Specimens without stirrups (Type B);216
16.5;Conclusion;218
16.6;References;219
17;Modelling the Stiffness Reduction of Corroded Reinforced Concrete Beams after Cracking;220
17.1;Introduction;220
17.2;Experimental Program;221
17.3;Macro Finite-Element Model;222
17.3.1;Steel strain distribution between two cracks;222
17.3.2;Calculation of the steel strain ssnc;223
17.3.3;Calculation of the average inertia Ia of the MEF;224
17.3.4;Corrosion damage;225
17.3.5;Beams overall stiffness calculation;226
17.4;Finite Element Analysis;227
17.4.1;Finite element model;227
17.4.2;Models of beams of LMDC B series;228
17.5;Results and Discussion;229
17.6;Conclusions;230
17.7;References;230
18;Bond Response in Structural Concrete with Corroded Steel Bars. Experimental Results;232
18.1;Introduction;232
18.1.1;Resistance;232
18.2;Force Transfer between Corrosion-Free Reinforcement and Concrete;233
18.2.1;Interface properties;233
18.2.2;Anchorage of reinforcing bars;233
18.2.3;Bond strength;233
18.3;Previous Studies on Bond with Corroded Steel Bars;234
18.3.1;Overview;234
18.3.2;Experimental studies;234
18.4;Test Planning;235
18.4.1;Pull-out tests;235
18.4.2;Specimens;236
18.4.3;Data acquisition;237
18.4.4;Test programme;238
18.5;Testing;239
18.6;Results and Discusion;239
18.7;Final Remarks;241
18.8;Acknowledgment;242
18.9;References;242
19;Mechanical Behavior of Long-Term Corroded Reinforced Concrete Beam;243
19.1;Introduction;243
19.2;Experimental Context;244
19.2.1;Reinforced concrete specimens;245
19.2.2;Beam exposure environment;245
19.2.3;Loading of beams;246
19.3;Experimental Program;246
19.3.1;Cracking maps;247
19.3.2;Corrosion maps;247
19.3.3;Steel behavior;247
19.3.4;Flexure load response;247
19.4;Experiments Results and Modeling;248
19.4.1;Cracking maps;248
19.4.2;Corrosion maps;248
19.4.3;Steel behavior;251
19.4.4;Flexure Load Response;253
19.5;Conclusion;256
19.6;Acknowledgment;256
19.7;References;257
20;Modelling and Nonlinear FE Analysis of Deteriorated Existing Concrete Structures Based on Inspection;259
20.1;Introduction;259
20.2;Procedure of Evaluating Residual Structural Performance of Existing Concrete Structures by Nonlinear Analysis;260
20.2.1;General flow;260
20.2.2;Inspection of deteriorated structure;261
20.2.3;Performance evaluation and judgment of countermeasure;264
20.3;Integrated Case Study on Evaluation of Residual Structural Performance of Existing Concrete Structure by Nonlinear FE Analysis;265
20.3.1;Objective structure;265
20.3.2;Analytical cases;266
20.3.3;Numerical program and constitutive models;268
20.3.4;Results and discussion;269
20.4;Conclusions;271
20.5;Acknowledgements;271
20.6;References;272
21;Probabilistic Approach to Service Life Prediction of Concrete Structures Subjected to Load and Environmental Actions;273
21.1;Introduction;273
21.2;Structural Performance of RC Bridge Slab in a Marine Environment;274
21.2.1;Hazard curves of amount of airborne chlorides;274
21.2.2;Steel weight loss due to corrosion;274
21.2.3;Relationship between the steel weight loss and flexural strength loss;276
21.3;Structural Reliability Analysis and Updating Method (SMCS) for Existing RC Structure;277
21.3.1;Time-dependent reliability analysis;277
21.3.2;Updating based on inspections results;277
21.4;Illustrative Example;278
21.4.1;Description of RC bridge slab and loads;278
21.4.2;Modeling of observational data;278
21.4.3;Time-dependent reliability analysis of RC slabs;279
21.5;Conclusions;280
21.6;References;281
22;Author Index;282