Anderson | Oriented Matroids | Buch | 978-1-009-49411-3 | sack.de

Buch, Englisch, Band 216, 333 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 636 g

Reihe: Cambridge Studies in Advanced Mathematics

Anderson

Oriented Matroids


Erscheinungsjahr 2025
ISBN: 978-1-009-49411-3
Verlag: Cambridge University Press

Buch, Englisch, Band 216, 333 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 636 g

Reihe: Cambridge Studies in Advanced Mathematics

ISBN: 978-1-009-49411-3
Verlag: Cambridge University Press


Oriented matroids appear throughout discrete geometry, with applications in algebra, topology, physics, and data analysis. This introduction to oriented matroids is intended for graduate students, scientists wanting to apply oriented matroids, and researchers in pure mathematics. The presentation is geometrically motivated and largely self-contained, and no knowledge of matroid theory is assumed. Beginning with geometric motivation grounded in linear algebra, the first chapters prove the major cryptomorphisms and the Topological Representation Theorem. From there the book uses basic topology to go directly from geometric intuition to rigorous discussion, avoiding the need for wider background knowledge. Topics include strong and weak maps, localizations and extensions, the Euclidean property and non-Euclidean properties, the Universality Theorem, convex polytopes, and triangulations. Themes that run throughout include the interplay between combinatorics, geometry, and topology, and the idea of oriented matroids as analogs to vector spaces over the real numbers and how this analogy plays out topologically.

Anderson Oriented Matroids jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1. Realizable oriented matroids; 2. Oriented matroids; 3. Elementary operations and properties; 4. The topological representation theorem; 5. Strong maps and weak maps; 6. Single-element extensions; 7. The universality theorem; 8. Oriented matroid polytopes; 9. Subdivisions and triangulations; 10. Spaces of oriented matroids; 11. Hints on selected exercises; References; Index.


Anderson, Laura
Laura Anderson is Associate Professor in the Department of Mathematics and Statistics at Binghamton University. Her research focuses on interactions between combinatorics and topology, particularly those involving oriented matroids, convex polytopes, and other concepts from discrete geometry.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.