E-Book, Englisch, Band 28, 207 Seiten, Format (B × H): 155 mm x 230 mm
Amirov Integral Geometry and Inverse Problems for Kinetic Equations
Nachdruck 2014
ISBN: 978-3-11-094094-7
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 28, 207 Seiten, Format (B × H): 155 mm x 230 mm
Reihe: Inverse and Ill-Posed Problems Series
ISBN: 978-3-11-094094-7
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark
In this monograph a method for proving the solvability of integral geometry problems and inverse problems for kinetic equations is presented. The application of this method has led to interesting problems of the Dirichlet type for third order differential equations, the solvability of which appears to depend on the geometry of the domain for which the problem is stated. Another considered subject is the problem of integral geometry on paraboloids, in particular the uniqueness of solutions to the Goursat problem for a differential inequality, which implies new theorems on the uniqueness of solutions to this problem for a class of quasilinear hyperbolic equations. A class of multidimensional inverse problems associated with problems of integral geometry and the inverse problem for the quantum kinetic equations are also included.
Zielgruppe
Students, Researchers, and Lecturers in Mathematics, Mathematical
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Geowissenschaften Geologie Geophysik