Buch, Englisch, Band 2, 158 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 424 g
Theory and Applications
Buch, Englisch, Band 2, 158 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 424 g
Reihe: Big and Integrated Artificial Intelligence
ISBN: 978-3-031-57566-2
Verlag: Springer International Publishing
This book focuses on a wide range of distributed machine learning and computing algorithms and their applications in healthcare and engineering systems. The contributors explore how these techniques can be applied to different real-world problems. It is suitable for students and researchers interested in conducting research in multidisciplinary areas that rely on distributed machine learning and computing techniques.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Ambient Intelligence, RFID, Internet der Dinge
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Chapter 1. Distributed Machine Learning and Computing: An Overview.- Chapter 2. Distributed Multi-agent Meta Learning for Trajectory Design in Wireless Drone Networks.- Chapter 3. Heterogeneity Aware Distributed Machine Learning at the Wireless Edge for Health IoT Applications: An EEG Data Case Study.- Chapter 4. A Comprehensive Review of Arti?cial Intelligence and Machine Learning Methods for Modern Health-care Systems.- Chapter 5. Vertical Federated Learning: Principles, Applications, and Future Frontiers.- Chapter 6. Decentralization of Energy Systems with Blockchain: Bridging Top-down and Bottom-up Management of the Electricity Grid.-Chapter 7. Empowering Distributed Solutions in Renewable Energy Systems and Grid Optimization.