Topics on Geometrical Evolution Problems and Degree Theory
Buch, Englisch, 348 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 1130 g
ISBN: 978-3-540-64803-1
Verlag: Springer Berlin Heidelberg
At the summer school in Pisa in September 1996, Luigi Ambrosio and Norman Dancer each gave a course on the geometric problem of evolution of a surface by mean curvature, and degree theory with applications to PDEs respectively. This self-contained presentation accessible to PhD students bridged the gap between standard courses and advanced research on these topics. The resulting book is divided accordingly into 2 parts, and neatly illustrates the 2-way interaction of problems and methods. Each of the courses is augmented and complemented by additional short chapters by other authors describing current research problems and results.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
I Geometric Evolution Problems.- Geometric evolution problems, distance function and viscosity solutions.- Variational models for phase transitions, an approach via ?-convergence.- Some aspects of De Giorgi’s barriers for geometric evolutions.- Partial Regularity for Minimizers of Free Discontinuity Problems with p-th Growth.- Free discontinuity problems and their non-local approximation.- II Degree Theory on Convex Sets and Applications to Bifurcation.- Degree theory on convex sets and applications to bifurcation.- Nonlinear elliptic equations involving critical Sobolev exponents.- On the existence and multiplicity of positive solutions for semilinear mixed and Neumann elliptic problems.- Solitons and Relativistic Dynamics.- An algebraic approach to nonstandard analysis.- References.