Alper | Machine Learning and Big Data-enabled Biotechnology | Buch | 978-3-527-35474-0 | sack.de

Buch, Englisch, 432 Seiten, Format (B × H): 170 mm x 244 mm

Reihe: Advanced Biotechnology

Alper

Machine Learning and Big Data-enabled Biotechnology


1. Auflage 2026
ISBN: 978-3-527-35474-0
Verlag: Wiley-VCH GmbH

Buch, Englisch, 432 Seiten, Format (B × H): 170 mm x 244 mm

Reihe: Advanced Biotechnology

ISBN: 978-3-527-35474-0
Verlag: Wiley-VCH GmbH


The book discusses how Machine Learning and Big Data is and can be used in biotechnology for a wide breath of topics. It is separated
into three main parts, with the first covering DNA and ranging from ?synthetic biology part design (such as promoters)? to ?predictions from genome sequences?. The second part concerns proteins, with topics ranging from ?structure and design tools? to ?pathway discovery / retrobiosynthesis?, while the last part covers whole cells and ranges from ?Machine Learning approaches for gene expression? to ?Machine Learning predictions of phenotype and bioreactor performance?
Alper Machine Learning and Big Data-enabled Biotechnology jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Part I - From DNA?
1 Deep learning approaches for synthetic biology part design
2 Automated approaches for GSM development from DNA sequence
3 Predictive models from genome sequences
Part II - ?.to Proteins?
4 De novo protein structure and design tools
5 Machine learning approaches for protein engineering
6 Pathway discovery / Retrobiosynthesis
7 Enzyme functional classifications
8 Proteomics machine learning approaches and de novo identification
Part III - ?to whole cells and beyond
9 Machine learning approaches for gene expression
10 Metabolomics big data approaches
11 Use of Generative AI and natural language processing for cell models
12 Metabolic production, strain engineering, and flux design
13 Automated function and learning in biofoundries/strain designs
14 Machine learning predictions of phenotype and bioreactor performance


Dr. Hal Alper is the Kenneth A. Kobe Professor in Chemical Engineering and Executive Director of the Center for Biomedical Research Support at The University of Texas at Austin. He earned his Ph.D. in Chemical Engineering from the Massachusetts Institute of Technology in 2006 and was a postdoctoral research associate at the Whitehead Institute for Biomedical Research from 2006-2008, and at Shire Human Genetic Therapies from 2007-2008. Dr. Alper also serves on the Graduate Studies Committee for the Cell and Molecular Biology Department and the Biochemistry Department. He is currently the Principal Investigator of the Laboratory for Cellular and Metabolic Engineering at The University of Texas at Austin where his lab focuses on metabolic and cellular engineering in the context of biofuel, biochemical, and biopharmaceutical production in an array of model host organisms. His research focuses on applying and extending the approaches of synthetic biology, systems
biology, and protein engineering.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.