Almeida / Vasco | Progress in Digital and Physical Manufacturing | E-Book | sack.de
E-Book

E-Book, Englisch, 307 Seiten, eBook

Reihe: Lecture Notes in Mechanical Engineering

Almeida / Vasco Progress in Digital and Physical Manufacturing

Proceedings of ProDPM'19
1. Auflage 2019
ISBN: 978-3-030-29041-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of ProDPM'19

E-Book, Englisch, 307 Seiten, eBook

Reihe: Lecture Notes in Mechanical Engineering

ISBN: 978-3-030-29041-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book contains selected papers from the First International Conference on Progress in Digital and Physical Manufacturing (ProDPM'19), organized by the School of Technology and Management (ESTG) of the Polytechnic Institute of Leiria (IPL). It presents a significant contribution to the current advances in digital and physical manufacturing issues as it contains topical research in this field. The book content is of interest to those working on digital and physical manufacturing, promoting better links between the academia and the industry. The conference papers cover a wide range of important topics like biomanufacturing, advanced rapid prototyping technologies, rapid tooling and manufacturing, micro-fabrication, 3D CAD and data acquisition, and collaborative design.
Almeida / Vasco Progress in Digital and Physical Manufacturing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;6
2;Conference Committees;8
2.1;Conference Co-chairs;8
2.2;Organizing Committee;8
2.3;Scientific Committee;8
2.4;Acknowledgments and Sponsors;10
2.5;Main Sponsors;10
2.6;Event Sponsors;10
2.7;Institutional Sponsors;10
2.8;Invited Lectures;11
2.9;Keynotes;15
3;HP 3D Printing: Accuracy and Repeatability in Digital Manufacturing Bruno Romero Azorin HP Inc., Sant Cugat, 08174 Barcelona, Spain bruno.romero.azorin@hp.com;16
3.1;1 Process Capacity and OEE in Digital Manufacturing;16
3.2;1.1 HP Multi Jet Fusion Approach to Process Capacity and OEE;16
3.3;1.2 HP 3D Process Control;17
3.4;1.3 Overall Equipment Effectiveness;18
4;Laser Metal Deposition and Laser Metal Fusion Carlos Mougueira TRUMPF Portugal Lagoas Park, Edifício 11, Piso 1, 2740-270 Porto Salvo, Portugal www.trumpf.comAbstract. Additive Manufacturing: the benefits of the Laser Metal Fusion and Laser Metal deposition in application areas where conventional production reaches its limits. Keywords: Additive Manufacturing • 3D Printing • Laser Metal Fusion1 Additive Manufacturing Process1.1 Laser Metal FusionPowder Bed Based laser melting (Laser Metal Fusion, LMF) is often referred to as metallic 3D printing, Powder Bed Fusion or Selective Laser Melting. The laser builds up the workpiece layer by layer from a bed of powder. The blueprint is provided by a CAD model. Tools are not required. The powder is applied to a platform, and the laser beam melts the powder with high precision, according to the CAD data, connecting defined locations with the layer below. The laser then repeats this process until the metallic component is ready. The workpiece now possesses the properties of the material that was used in powder form. A large number of metallic materials in powder form can be used for this method, including steel, aluminum, or titanium (Figs. 1 and 2). Example: Exhaust Manifold:Material: TitaniumNº of layers: 2 915 | 60 µmTime of processing: 26 h 33 minObjective: Design optimization1.2 Laser Metal DepositionLaser Metal Deposition – or LMD for short – is also known as Direct Energy Deposition or Laser Cladding. The process is simple to explain. The laser creates a melt pool on the surface of the component, and metallic powder is automatically fed in through a nozzle. Interconnected weld beads are thus formed which form structures on existing substrates or even create entire components (Fig. 3). Example: WishboneMaterial: AluminumTime of processing: aprox. 20sObjective: costs and time production reduction Reference1. TRUMPF Laser-und Systemtechnik GmbH;20
4.1;1 Additive Manufacturing Process;20
4.2;1.1 Laser Metal Fusion;20
4.3;1.2 Laser Metal Deposition;21
4.4;Reference;21
5;Reference;22
5.1;1 Unleash New Growth and Scale Production with HP’s Most Advanced Plastics 3D Printing Solution;22
5.2;1.1 Introducing the New HP 3D Jet Fusion 5200 Printing Solution;22
5.3;1.2 Improved Software and New Materials;23
6;1.2 Improved Software and New Materials;25
6.1;1 Introduction;25
6.2;2 Methodology and Approach;27
6.3;3 Results and Discussions;28
7;Contents;29
8;Advanced Manufacturing Technologies;33
9;Additive Manufacturing Was the Answer, but What Is the Question?;34
9.1;Abstract;34
9.2;1 Introduction;34
9.2.1;1.1 Background;34
9.2.2;1.2 Technological Obstacles and Opportunities;35
9.2.3;1.3 New Technology or New Ways to Work;36
9.3;2 Design as Disruption;37
9.3.1;2.1 Design Tools and Methods;37
9.4;3 A Tentative Analysis;37
9.5;4 Discussion and Conclusion;38
9.6;References;39
10;Expectations of Additive Manufacturing for the Decade 2020–2030;41
10.1;Abstract;41
10.2;1 Introduction;41
10.3;2 Production of Complex Components;42
10.3.1;2.1 Design for Additive Manufacturing (DfAM);43
10.3.2;2.2 4D Printing and Smart Materials;43
10.3.3;2.3 Functionally Graded Additive Manufacturing;43
10.4;3 AM Technological Trends;43
10.5;4 New Production and Business Models;45
10.5.1;4.1 Key-Enabling Technologies for New Production and Business Models;45
10.5.2;4.2 Green Production Models;46
10.6;5 Conclusions;47
10.7;References;47
11;Additive Technologies in the Medical Field for 2030;51
11.1;Abstract;51
11.2;1 Introduction;51
11.3;2 Methodology;53
11.3.1;2.1 Study Design;53
11.3.2;2.2 Delphi Method;53
11.3.2.1;2.2.1 First Round;54
11.3.2.2;2.2.2 Second Round;56
11.4;3 Conclusions;58
11.5;References;58
12;Technological and Economic Comparison of Additive Manufacturing Technologies for Fabrication of Polymer Tools for Injection Molding;59
12.1;Abstract;59
12.2;1 Introduction;59
12.3;2 Methodology;61
12.3.1;2.1 General Trial Procedure;61
12.3.2;2.2 Reference Geometry and Tool Design;62
12.3.3;2.3 Tool and Machine Setup;63
12.3.4;2.4 Tested Tool and Part Materials;64
12.4;3 Trial Results;64
12.5;4 Conclusions;67
12.6;5 Acknowledgements;68
12.7;References;68
13;Novel Robotic 3D Printing Technology for the Manufacture of Large Parts;71
13.1;Abstract;71
13.2;1 Introduction;71
13.3;2 State-of-the-Art;72
13.3.1;2.1 3D Printing Technologies for Large Sizes;72
13.3.2;2.2 Industrial Robotics for 3D Printing;72
13.4;3 Large-Scale Printer System Design;72
13.4.1;3.1 System Components;72
13.4.2;3.2 Extruder Development and Dispensing System Testing;73
13.5;4 Controller Development Using the VINCENT Simulation Tool;74
13.6;5 Conclusion;75
13.7;Acknowledgement;76
13.8;References;76
14;Green and Digital Manufacturing Environments and Simulation Systems;77
15;Implementing RAMI4.0 in Production - A Multi-case Study;78
15.1;Abstract;78
15.2;1 Introduction;78
15.3;2 The Reference Architectural Model for Industrie 4.0 (RAMI 4.0);79
15.4;3 Research Methods;80
15.5;4 RAMI 4.0 SME Implementation Methodology;80
15.6;5 Multi-case Study;82
15.6.1;5.1 Discussion;83
15.7;6 Conclusions;84
15.8;Acknowledgements;84
15.9;References;84
16;Assessing Industry 4.0 Readiness of Portuguese Companies;86
16.1;1 Introduction;86
16.2;2 Related Work;87
16.3;3 SHIFTo4.0;88
16.3.1;3.1 Dimensions Description;88
16.3.2;3.2 Levels Description;89
16.3.3;3.3 Roadmap;90
16.4;4 Case Study;91
16.5;5 Conclusions;92
16.6;References;93
17;Exploring the Linkages Between the Internet of Things and Planning and Control Systems in Industrial Applications;94
17.1;Abstract;94
17.2;1 Introduction;94
17.3;2 Methodology;95
17.4;3 A Conceptual Framework for IoT and PCS Interactions;96
17.5;4 Mapping the Results of the Literature Review into the Conceptual Framework for IoT and PCS Interactions;97
17.5.1;4.1 PCS with a Monitoring Component Interacting with IoT;98
17.5.2;4.2 PCS with a Planning Component Interacting with IoT;98
17.5.3;4.3 PCS with a Planning Component Interacting with IoT;98
17.5.4;4.4 Fully Fledged PCS Interacting with IoT;99
17.6;5 Conclusions;99
17.7;Acknowledgements;99
17.8;References;100
18;Virtual Workstations Applied to the Mould Industry - A Case Study;102
18.1;Abstract;102
18.2;1 Introduction;102
18.2.1;1.1 Traditional Computing Model;103
18.2.2;1.2 Virtual Workstations: A New Technology and Infrastructure;104
18.3;2 Project Description;105
18.3.1;2.1 Project Goals;105
18.3.2;2.2 Challenges;105
18.3.3;2.3 Project Stages;106
18.3.3.1;2.3.1 First Step;106
18.3.3.2;2.3.2 Second Step;106
18.3.3.3;2.3.3 Implemented Solution;107
18.4;3 Results;108
18.5;4 Conclusions;109
18.6;References;109
19;To Simulate or Not to Simulate? Challenges in Digitally Prototyping HMI Interactive Technologies;111
19.1;Abstract;111
19.2;1 Introduction;111
19.3;2 Methodology;112
19.4;3 Results;112
19.4.1;3.1 Input Technologies;112
19.4.2;3.2 Input-Output Technologies;113
19.4.3;3.3 Output Technologies;115
19.5;4 Discussion, Conclusion and Future Work;116
19.6;References;117
20;Study on the On-line Support System for Welder;118
20.1;Abstract;118
20.2;1 Introduction;118
20.3;2 Outline of Welder Support System;119
20.4;3 Measurement Method of Welder Behavior;120
20.5;4 Analysis of Welder Behavior Using Numerical Simulation;121
20.6;5 Presentation Method of the Information to Welder;122
20.7;6 Conclusion;123
20.8;References;123
21;Development of a Supporting System of Pass Design in Multi-pass Welding Based on GMAW Weld Pool Simulation;125
21.1;Abstract;125
21.2;1 Introduction;125
21.3;2 Simulation Model;126
21.4;3 Supporting System of Pass Design in Multi-pass Welding;127
21.4.1;3.1 Joint Geometry;127
21.4.2;3.2 Database of the Supporting System;128
21.4.3;3.3 Schematic Diagram of the System;129
21.5;4 Application of the Supporting System;129
21.6;5 Conclusion;130
21.7;Reference;130
22;Integration of BIM and Generative Design for Earthbag Projects;131
22.1;Abstract;131
22.2;1 Introduction;131
22.3;2 Development;133
22.3.1;2.1 Needed Material;133
22.3.2;2.2 Technical Prescriptions;133
22.3.3;2.3 Inserting the New Material;134
22.4;3 Results and Validation;135
22.4.1;3.1 Procedure to Design Earthbag Projects with Parametric Dome in BIM;135
22.4.2;3.2 Validation Through Simulation Process;135
22.5;4 Discussions;137
22.6;Funding;137
22.7;References;137
23;Potential of Natural Ventilation and Vegetation for Achieving Low-Energy Tall Buildings in Tropical Climate: An Overview;139
23.1;Abstract;139
23.2;1 Introduction;139
23.3;2 Methodology;141
23.4;3 Results and Discussion;142
23.5;4 Conclusions;143
23.6;References;144
24;Design;146
25;Improve Engineering Skills in Digital Manufacturing for New Products;147
25.1;Abstract;147
25.2;1 Introduction;147
25.3;2 Project in Digital Manufacturing;148
25.3.1;2.1 Objectives and Learning and Challenges;148
25.3.2;2.2 The Methodology;148
25.3.3;2.3 Initial Market Analysis, Concept and 3D CAD Model;149
25.3.4;2.4 The Volumetric Model, CNC Machining and Clay;149
25.3.5;2.5 Data Shape Acquisition e 3D Modelling (CAD);150
25.3.6;2.6 Prototyping and Design for Additive Manufacturing;150
25.3.7;2.7 3D Printing;150
25.3.8;2.8 Estimating Cost of Prototyping;151
25.4;3 Final Considerations;151
25.5;Acknowledgments;152
25.6;References;152
26;Geometry-Based Process Adaption to Fabricate Parts with Varying Wall Thickness by Direct Metal Deposition;153
26.1;Abstract;153
26.2;1 Introduction;153
26.3;2 Modelling Approach;154
26.3.1;2.1 Parameter Influence;154
26.3.2;2.2 Geometry Recognition;155
26.4;3 Results and Discussion;156
26.5;4 Conclusion;158
26.6;Acknowledgements;158
26.7;References;158
27;Design and Printing Parameters Effect on PLA Fused Filament Fabrication Scaffolds;159
27.1;Abstract;159
27.2;1 Introduction;159
27.3;2 Materials and Methods;160
27.4;3 Results and Discussion;161
27.4.1;3.1 Specimen Morphology;161
27.4.2;3.2 Mechanical Properties;162
27.5;4 Conclusions;163
27.6;Acknowledgements;163
27.7;References;164
28;Strategies for Obtaining Porous Media Through the Process Planning in Material Extrusion Additive Manufacturing;165
28.1;Abstract;165
28.2;1 Introduction;165
28.3;2 Proposed PM Design for Material Extrusion AM;166
28.3.1;2.1 RP3 (Rapid Prototyping Process Planning);167
28.3.2;2.2 Printed PM;168
28.4;3 Results and Discussion;169
28.5;4 Conclusions;170
28.6;Acknowledgments;170
28.7;References;170
29;Programming 4D Printed Parts Through Shape-Memory Polymers and Computer-Aided-Design;171
29.1;Abstract;171
29.2;1 Introduction;171
29.2.1;1.1 The Concept of 4D Printing;171
29.3;2 Materials, Computer-Aided-Design and Behaviour;173
29.3.1;2.1 Materials and Computer-Aided-Design for 4D Printing;173
29.3.2;2.2 Shape Changing Behaviours of 4D Printed Parts;175
29.3.3;2.3 Communicating the Intent of 4D Printing;177
29.3.4;2.4 Summary and Future Work;177
29.4;References;178
30;CAD and 3D Data Acquisition Technologies;180
31;Modeling and Simulation of a Novel Functional Brace for Large Bone Defects;181
31.1;Abstract;181
31.2;1 Introduction;181
31.3;2 Product Development Process;182
31.4;3 Modeling and Simulation;184
31.5;4 Results and Discussion;185
31.6;5 Conclusion;187
31.7;Acknowledgement;187
31.8;References;187
32;AM Tooling for the Mouldmaking Industry;188
32.1;Abstract;188
32.2;1 Introduction;188
32.2.1;1.1 Additive Manufacturing;188
32.2.2;1.2 Mould Making and Injection Moulding;189
32.3;2 Case-Study: Injection Nozzle Bushing;189
32.3.1;2.1 Bushing Design for Conformal Cooling;190
32.3.2;2.2 Numerical Simulation;191
32.3.3;2.3 Generative Design;192
32.4;3 Manufacture of Injection Nozzle Bushing;194
32.5;4 Results and Discussion;195
32.6;5 Conclusions;195
32.7;References;196
33;3D Printing: An Innovative Technology for Customised Shoe Manufacturing;197
33.1;Abstract;197
33.2;1 Introduction;197
33.3;2 3D Printed Textile Structure and Apparel;198
33.3.1;2.1 Consumer Personalisation Preferences and 3D Printed Footwear;200
33.4;3 Case Study – Shoe Redesign with Topological and Lattice Design;201
33.5;4 Conclusion;203
33.6;References;204
34;Materials;207
35;Polymer Matrix Nanocomposites for 3D Printing;208
35.1;Abstract;208
35.2;1 Introduction;208
35.3;2 Experimental;209
35.3.1;2.1 Materials;209
35.3.2;2.2 Nanocomposites;210
35.3.3;2.3 Filament Extrusion;210
35.3.4;2.4 Characterization;210
35.4;3 Results and Discussion;211
35.5;4 Conclusions;213
35.6;References;213
36;Morphology and Thermal Behaviour of New Mycelium-Based Composites with Different Types of Substrates;214
36.1;Abstract;214
36.2;1 Introduction;214
36.2.1;1.1 The Use of Mycelium-Based Biomaterials;214
36.2.2;1.2 Mycelium Based Material Production;215
36.3;2 Methods;216
36.3.1;2.1 Fungi and Substrates;216
36.3.2;2.2 Preparation of Substrates;217
36.3.3;2.3 Thermal Tests;217
36.4;3 Results and Discussion;217
36.4.1;3.1 Morphological Characterization;217
36.4.2;3.2 Thermal Characterization;220
36.5;4 Conclusion;221
36.6;References;222
37;Developing Sustainable Materials for Marine Environments: Algae as Natural Fibers on Polymer Composites;223
37.1;Abstract;223
37.2;1 Introduction;223
37.3;2 Materials and Methods;224
37.4;3 Results;224
37.4.1;3.1 Mechanical Properties;224
37.4.2;3.2 Seawater Absorption;227
37.4.3;3.3 Dynamic Mechanical Analysis;228
37.5;4 Summary and Conclusions;229
37.6;References;229
38;On the Effect of Deposition Patterns on the Residual Stress, Roughness and Microstructure of AISI 316L Samples Produced by Directed Energy Deposition;231
38.1;Abstract;231
38.2;1 Introduction;231
38.3;2 Materials and Methods;232
38.4;3 Results and Discussion;233
38.4.1;3.1 Surface Roughness;234
38.4.2;3.2 Residual Stresses;234
38.4.3;3.3 Microstructure;235
38.5;4 Conclusions;236
38.6;Acknowledgments;236
38.7;References;236
39;A Novel Specimen Geometry for Fatigue Crack Growth in Vacuum;238
39.1;Abstract;238
39.2;1 Introduction;238
39.3;2 Specimen Production;239
39.4;3 Numerical Analysis;241
39.5;4 Numerical Results;243
39.6;5 Conclusions;243
39.7;Acknowledgements;243
39.8;References;243
40;Fatigue Life Prediction in Selective Laser Melted Samples Under Variable Amplitude Loading Based on Two Constant-Amplitude Tests;244
40.1;Abstract;244
40.2;1 Introduction;244
40.3;2 Experimental Procedure;245
40.4;3 Results;245
40.5;4 Conclusions;248
40.6;References;249
41;Study of Laser Metal Deposition (LMD) as a Manufacturing Technique in Automotive Industry;250
41.1;Abstract;250
41.2;1 Introduction;250
41.2.1;1.1 Powder and Wire LMD;252
41.3;2 Materials and Methods;252
41.3.1;2.1 Equipment and Material;252
41.3.2;2.2 Mechanical Test Schedule;254
41.4;3 Results;256
41.5;4 Conclusion;262
41.6;References;263
42;Applications;265
43;Photocurable Alginate Bioink Development for Cartilage Replacement Bioprinting;266
43.1;Abstract;266
43.2;1 Introduction;266
43.3;2 Materials and Methods;267
43.3.1;2.1 Synthesis of Methacrylated Alginate;267
43.3.2;2.2 1H NMR;267
43.3.3;2.3 Rheological Characterization;268
43.3.4;2.4 Cell Viability and Proliferation;268
43.4;3 Result and Discussion;268
43.4.1;3.1 Chemical Modification Through 1H NMR;268
43.4.2;3.2 Rheological Characterization of Alginate Methacrylate;269
43.4.3;3.3 Cell Viability Assessment;270
43.5;4 Conclusions;271
43.6;Acknowledgement;271
43.7;References;271
44;Composite Scaffolds for Large Bone Defects;273
44.1;Abstract;273
44.2;1 Introduction;273
44.3;2 Materials and Methods;274
44.3.1;2.1 Materials;274
44.3.2;2.2 Scaffolds Fabrication;275
44.3.3;2.3 Morphological Characterization;275
44.3.4;2.4 Mechanical Characterization;275
44.3.5;2.5 Water Contact Angle;275
44.3.6;2.6 Biological Characterization;276
44.4;3 Result and Discussion;276
44.4.1;3.1 Morphological Characterization;276
44.4.2;3.2 Mechanical Characterization;276
44.4.3;3.3 Biological Analysis;277
44.5;4 Conclusions;280
44.6;Acknowledgement;280
44.7;Reference;280
45;Bi-material Electrospun Meshes for Wound Healing Applications;281
45.1;Abstract;281
45.2;1 Introduction;281
45.3;2 Materials and Methods;282
45.3.1;2.1 Materials;282
45.3.2;2.2 Methods;282
45.4;3 Results and Discussion;283
45.4.1;3.1 Morphological Analysis of the Meshes;283
45.4.2;3.2 FTIR Analysis of Meshes;284
45.4.3;3.3 Biological Results;286
45.5;4 Conclusions;287
45.6;Acknowledgement;287
45.7;References;287
46;Fabrication of Cellulose Hydrogel Objects Through 3D Printed Sacrificial Molds;288
46.1;Abstract;288
46.2;1 Introduction;288
46.3;2 Methodology;289
46.3.1;2.1 Materials;289
46.3.2;2.2 Methods;289
46.4;3 Results and Discussion;291
46.4.1;3.1 Effects of Mold Removal Method on Hydrogel Microstructure;291
46.4.2;3.2 Mold Material Effect on Mechanical Properties of Cellulose Gel;292
46.5;4 Conclusion;292
46.6;References;292
47;3D Printed Geometries on Textile Fabric for Garment Production;294
47.1;Abstract;294
47.2;1 Introduction;294
47.3;2 Materials and Methods;295
47.4;3 Results and Discussion;297
47.5;4 Conclusions;298
47.6;References;298
48;Moving Forward to 3D/4D Printed Building Facades;300
48.1;Abstract;300
48.2;1 Introduction;300
48.3;2 Advanced Materials for Building Facades;301
48.3.1;2.1 Functionally Graded Materials;301
48.3.2;2.2 Phase Change Materials;301
48.3.3;2.3 Shape Memory Materials;302
48.4;3 Conclusions;304
48.5;References;304
49;Author Index;306



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.