Alinhac | Hyperbolic Partial Differential Equations | E-Book | sack.de
E-Book

E-Book, Englisch, 150 Seiten, eBook

Reihe: Universitext

Alinhac Hyperbolic Partial Differential Equations


1. Auflage 2009
ISBN: 978-0-387-87823-2
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 150 Seiten, eBook

Reihe: Universitext

ISBN: 978-0-387-87823-2
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



The aim of this book is to present hyperbolic partial di?erential equations at an elementary level. In fact, the required mathematical background is only a third year university course on di?erential calculus for functions of several variables. No functional analysis knowledge is needed, nor any distribution theory (with the exception of shock waves mentioned below). k All solutions appearing in the text are piecewise classical C solutions. Beyond the simpli?cations it allows, there are several reasons for this choice: First, we believe that all main features of hyperbolic partial d- ferential equations (PDE) (well-posedness of the Cauchy problem, ?nite speed of propagation, domains of determination, energy inequalities, etc. ) canbedisplayedinthiscontext. Wehopethatthisbookitselfwillproveour belief. Second,allproperties,solutionformulas,andinequalitiesestablished here in the context of smooth functions can be readily extended to more general situations (solutions in Sobolev spaces or temperate distributions, etc. ) by simple standard procedures of functional analysis or distribution theory, which are “external” to the theory of hyperbolic equations: The deep mathematical content of the theorems is already to be found in the statements and proofs of this book. The last reason is this: We do hope that many readers of this book will eventually do research in the ?eld that seems to us the natural continuation of the subject: nonlinear hyp- bolic systems (compressible ?uids, general relativity theory, etc. ).

Alinhac Hyperbolic Partial Differential Equations jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Vector Fields and Integral Curves.- Operators and Systems in the Plane.- Nonlinear First Order Equations.- Conservation Laws in One-Space Dimension.- The Wave Equation.- Energy Inequalities for the Wave Equation.- Variable Coefficient Wave Equations and Systems.


Serge Alinhac (1948–) received his PhD from l'Université Paris-Sud XI (Orsay). After teaching at l'Université Paris Diderot VII and Purdue University, he has been a professor of mathematics at l'Université Paris-Sud XI (Orsay) since 1978. He is the author of Blowup for Nonlinear Hyperbolic Equations (Birkhäuser, 1995) and Pseudo-differential Operators and the Nash–Moser Theorem (with P. Gérard, American Mathematical Society, 2007). His primary areas of research are linear and nonlinear partial differential equations.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.