E-Book, Englisch, Band 560, 263 Seiten, eBook
Alimisis / Moro / Menegatti Educational Robotics in the Makers Era
1. Auflage 2017
ISBN: 978-3-319-55553-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 560, 263 Seiten, eBook
Reihe: Advances in Intelligent Systems and Computing
ISBN: 978-3-319-55553-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Organization;8
2.1;Program Committee;8
2.2;Additional Reviewers;9
3;Contents;10
4;Theory and Practice in Educational Robotics (Invited Papers);13
5;Mindstorms Revisited: Making New Construals of Seymour Papert’s Legacy;14
5.1;Abstract;14
5.2;1 Introduction;14
5.3;2 Mindstorms from a Computational Thinking Perspective;15
5.4;3 Mindstorms from a Pedagogical Perspective;19
5.5;4 Making Construals;23
5.6;5 Conclusion;28
5.7;Acknowledgments;29
5.8;References;29
6;Primary Level Young Makers Programming & Making Electronics with Snap4Arduino;31
6.1;Abstract;31
6.2;1 Introduction;31
6.2.1;1.1 Methodological Issues;31
6.2.2;1.2 Technological Issues: From Scratch to Snap4Arduino;32
6.2.3;1.3 Educative Issues and Main Goals of This Paper;33
6.3;2 The Course;34
6.3.1;2.1 Participants, Materials and Methods;35
6.3.2;2.2 Course Structure: Sessions with Different Projects and Different/Common Goals;36
6.4;3 Results and General Discussion;37
6.4.1;3.1 Results and Teaching Within the Course;37
6.4.2;3.2 Importance of the Previous Background;39
6.4.3;3.3 Methodological Issues: Pupils Programming with a PBL Approach;40
6.4.4;3.4 Curriculum and Key Competencies;42
6.4.5;3.5 Pupils’ Course Satisfaction;42
6.5;4 Conclusions;43
6.6;Acknowledgments;44
6.7;References;44
7;Theater Meets Robot – Toward Inclusive STEAM Education;45
7.1;Abstract;45
7.2;1 Introduction;45
7.3;2 Arts in Technology - A Brief Review;46
7.4;3 Theater Robotics: Context – Story – Crafting – Telling;47
7.5;4 Ongoing Work and Future Perspectives;49
7.6;References;50
8;Educational Robotics Projects in School and Higher Education;52
9;A Training Course in Educational Robotics for Learning Support Teachers;53
9.1;1 Introduction;53
9.2;2 Robotics in a Classroom with Special Needs;55
9.2.1;2.1 Motivations and Challenges;55
9.2.2;2.2 Keypoints of the Training Course;55
9.3;3 Description of the Activities;56
9.4;4 Evaluation of the Training Course;59
9.4.1;4.1 Instruments and Procedures;59
9.4.2;4.2 Participants;59
9.4.3;4.3 Data Analysis;60
9.5;5 Evaluation Summary and Conclusions;64
9.6;References;65
10;A Didactical Model for Educational Robotics Activities: A Study on Improving Skills Through Strong o ...;68
10.1;Abstract;68
10.2;1 Introduction;68
10.3;2 Theoretical Background;69
10.3.1;2.1 Computational Thinking;70
10.3.2;2.2 Strong vs. Minimal Teacher Guidance;70
10.3.3;2.3 Research Questions;71
10.4;3 Proposed Didactical Model CPG+;71
10.4.1;3.1 Pedagogical Character of the ER Seminar;71
10.4.2;3.2 Temporal Organization of the ER Seminar;73
10.5;4 Study;73
10.5.1;4.1 Learning Design - Implementation – Procedure;74
10.5.2;4.2 Data Collection;75
10.5.3;4.3 Results;75
10.5.4;4.4 Discussion;78
10.6;5 Conclusions;80
10.7;References;81
11;The Effectiveness of Integrating Educational Robotic Activities into Higher Education Computer Science Curricula: A Case Study in a Developing Country;83
11.1;1 Introduction;83
11.2;2 Related Work;84
11.3;3 Methodology;86
11.3.1;3.1 Course Overview;86
11.3.2;3.2 Learning Activities;87
11.3.3;3.3 Study Design;90
11.3.4;3.4 Student Surveys and Performance;90
11.3.5;3.5 Participants;91
11.4;4 Results;92
11.4.1;4.1 Students' Self-assessment of the Activities;92
11.4.2;4.2 Students' Exam Performance;94
11.5;5 Discussion;94
11.6;6 Conclusions;96
11.7;References;96
12;Educational Robotics and STEM Education in Primary Education: A Pilot Study Using the H&S Electronic ...;98
12.1;Abstract;98
12.2;1 Introduction;98
12.3;2 Educational Robotics and STEM Education;99
12.3.1;2.1 Educational Robotics;99
12.3.2;2.2 STEM Education;100
12.3.3;2.3 Robotics and STEM Education;101
12.4;3 Platform of H&S Electronic Systems;102
12.4.1;3.1 Description;102
12.4.2;3.2 Main Advantages;103
12.5;4 Methodology;104
12.5.1;4.1 The Educational Activity;105
12.6;5 Findings;107
12.7;6 Discussion and Conclusions;110
12.8;References;111
13;Duckietown: An Innovative Way to Teach Autonomy;114
13.1;1 Introduction;114
13.2;2 The Duckietown Platform;115
13.2.1;2.1 Why Duckies? A Friendlier Image for Autonomous Vehicles;117
13.3;3 Course Design;118
13.3.1;3.1 Intended Learning Outcomes;118
13.3.2;3.2 Teaching and Learning Activities;119
13.3.3;3.3 Assessment Tools;122
13.4;4 The ``Duckietown Engineering'' Role-Play;124
13.5;5 Feedback from the First Implementation (MIT, Spring 2016);124
13.5.1;5.1 Teaching Staff;124
13.5.2;5.2 Student Demographics;125
13.5.3;5.3 Deliverables;125
13.5.4;5.4 Reaching Underserved Demographics;127
13.5.5;5.5 Student Feedback and Discussion;127
13.6;6 Conclusions;128
13.7;References;129
14;Teacher Education to Analyze and Design Systems through Reverse Engineering;132
14.1;Abstract;132
14.2;1 Introduction;132
14.3;2 Educational Framework;134
14.4;3 Reverse Engineering;135
14.5;4 Teacher Education Course;136
14.6;5 Instructional Units;137
14.7;6 Student Reflections;139
14.8;7 Conclusions;140
14.9;References;141
15;Methodologies in Educational Robotics;143
16;29 Effective Ways You Can Use Robots in the Classroom;144
16.1;Abstract;144
16.2;1 Introduction;144
16.2.1;1.1 Data and Method;144
16.2.2;1.2 The Robots;145
16.3;2 ERA Principles;145
16.4;3 Educational Robotics Café and Important Thoughts;146
16.5;4 ERA Pedagogical Principle;146
16.5.1;4.1 Application;147
16.5.2;4.2 Tag Candidature;147
16.5.3;4.3 The Activities;147
16.5.4;4.4 The Tags;148
16.5.5;4.5 Using the Pedagogical Tags;155
16.6;5 Conclusions;155
16.7;Acknowledgements;155
16.8;References;155
17;Orbital Education Platform: Introducing Orbital Robotics to Secondary Education;158
17.1;1 Introduction;158
17.2;2 Pedagogical Targets;159
17.2.1;2.1 Lessons' Content;160
17.3;3 Pedagogical Approach;160
17.4;4 Platform Design Objectives;161
17.5;5 The Planar Space Emulator;162
17.5.1;5.1 Concept and High Level Requirements;162
17.5.2;5.2 Implementation;162
17.5.3;5.3 The Space Robot `satellite' Mockups;163
17.5.4;5.4 Remote Control;164
17.6;6 The Platform Exploitation;164
17.7;7 Discussion and Future Work;165
17.8;8 Conclusion;165
17.9;References;166
18;A Scenario-Based Approach for Designing Educational Robotics Activities for Co-creative Problem Solving;167
18.1;Abstract;167
18.2;1 Introduction;167
18.3;2 From Informal Activities to Curricular-Integrated ER Activities;168
18.4;3 A Scenario-Based Approach for Designing ER Activities;169
18.5;4 Diversity in the ER Activities Within the Scenario;171
18.5.1;4.1 A Taxonomy of ER Activities According to the Learners’ Engagement in the Knowledge Building Process;173
18.5.1.1;4.1.1 Level 1. Passive Exposure to Robotics (Without Manipulation);174
18.5.1.2;4.1.2 Level 2. Discussion About Robotics (Without Programming);174
18.5.1.3;4.1.3 Level 3. Individual or Collaborative Procedural Robotics (Programming/No Construction);175
18.5.1.4;4.1.4 Level 4. Engineering-Oriented Robotics (Programming and Construction);175
18.5.1.5;4.1.5 Level 5. Co-creative Project-Oriented Robotic Challenge (Collaborative Project Definition, Pro ...;175
18.6;5 Discussion;176
18.7;References;177
19;Assessment of Lower Secondary School Pupils’ Work at Educational Robotics Classes;179
19.1;Abstract;179
19.2;1 Introduction;179
19.3;2 Selected Methods;180
19.4;3 Curriculum for Educational Robotics with LEGO WeDo;180
19.5;4 Rubrics for Assessment Pupils’ Own Robotic Model;181
19.6;5 Conclusion;187
19.7;Acknowledgments;188
19.8;References;188
20;Educational Robotics and Programming;189
21;The Use of Robotics in Introductory Programming for Elementary Students;190
21.1;Abstract;190
21.2;1 Introduction;190
21.2.1;1.1 Robotics in Schools;190
21.2.2;1.2 The Benefits of Robotics in Learning Programming;191
21.3;2 Methodology;192
21.3.1;2.1 Objective and Research Questions;192
21.3.2;2.2 Sample;192
21.3.3;2.3 Procedure;192
21.4;3 Results;194
21.5;4 Discussion;197
21.6;References;198
22;The Combined Use of Lego Mindstorms NXT and App Inventor for Teaching Novice Programmers;200
22.1;Abstract;200
22.2;1 Introduction;200
22.3;2 Difficulties in Teaching and Learning Programming;201
22.4;3 Educational Robotics;202
22.5;4 The App Inventor for Android Programming Environment;203
22.6;5 Teaching Proposal;203
22.6.1;5.1 Activities;204
22.7;6 Evaluation of Educational Activity;207
22.8;7 Conclusions;208
22.9;References;208
23;Educational Robots Driven by Tangible Programming Languages: A Review on the Field;212
23.1;Abstract;212
23.2;1 Introduction;212
23.3;2 Tangible Languages for Robot Programing;213
23.3.1;2.1 Tortis – Slot Machine;213
23.3.2;2.2 Tangible Programming for Trains;213
23.3.3;2.3 Tangible Programming Using “Strings”;214
23.3.4;2.4 Tangible Programming Brick;214
23.3.5;2.5 Electronic Blocks - roBlocks;214
23.3.6;2.6 GameBlocks;215
23.3.7;2.7 Tern – Tangicons;215
23.3.8;2.8 The PROTEAS Kit;215
23.3.9;2.9 Algorithmic Bricks;215
23.3.10;2.10 Dr. Wagon;216
23.3.11;2.11 Robo-Blocks;216
23.3.12;2.12 KIBO;217
23.3.13;2.13 T-Maze, E-Blocks, TanProRobot;217
23.3.14;2.14 Primo;217
23.3.15;2.15 Code-a-Pillar;217
23.3.16;2.16 Development of Tangible Programming Languages;217
23.3.17;2.17 Research on Tangible Programming;218
23.4;3 Conclusion;219
23.5;References;219
24;Learning Programming with Educational Robotics: Towards an Integrated Approach;222
24.1;Abstract;222
24.2;1 Introduction;222
24.3;2 The Study;223
24.3.1;2.1 The Task;223
24.3.2;2.2 Robotic Kit;224
24.3.3;2.3 Data Collection;224
24.4;3 Results;224
24.4.1;3.1 The Human Body Analogy: Experimenting with the Sensors;224
24.4.2;3.2 Facing the Limitations of Sequential Programming;225
24.4.3;3.3 Translating Real World Distances into Programming Values;227
24.4.4;3.4 From Sequential Programming to Loops;227
24.4.5;3.5 Student Views About Robotics;228
24.5;4 Concluding Remarks;228
24.6;Acknowledgments;229
24.7;References;229
25;Short Papers Reporting Good Practices or Work in Progress (Presented in the Conference as Posters);230
26;Design Requirements for Educational Robotics Activities for Sustaining Collaborative Problem Solving;231
26.1;Abstract;231
26.2;1 Complex and Collaborative Problem Solving for the 21st Century Challenges;231
26.3;2 Collaborative Problem Solving (CPS) Skill;232
26.4;3 Design Requirements for Educational Robotics (ER) Learning Activities Sustaining the CPS;232
26.5;4 Discussion;234
26.6;References;234
27;Hedgehog Light – A Versatile, White Box Educational Robotics Controller;235
27.1;Abstract;235
27.2;1 Introduction;235
27.3;2 Architecture;235
27.4;3 Maker Aspects and Open Source;236
27.5;4 Capabilities and Use Cases;237
27.5.1;4.1 Graphical Programming Using Pocket Bot;237
27.5.2;4.2 Textual Programming Using Python;237
27.5.3;4.3 Microcontroller Programming;238
27.6;5 Conclusion and Future Work;238
27.7;Acknowledgment;238
27.8;References;238
28;Using LEGO Mindstorms as an Instructional Tool to Teach Science in Primary Education;239
28.1;Abstract;239
28.2;1 Introduction;239
28.3;2 Development of an Educational Lesson Plan;240
28.4;3 Conclusion;241
28.5;References;241
29;Robotics Poetry…;243
29.1;Abstract;243
29.2;1 Introduction;243
29.3;2 Materials and Methods;244
29.4;3 In Action;244
29.5;4 Conclusions;246
29.6;References;247
30;Programming Constructs in Curriculum for Educational Robotics at Lower Secondary School;248
30.1;Abstract;248
30.2;1 Introduction;248
30.3;2 Methodology;249
30.4;3 Programing Constructs in Our Curriculum;249
30.5;4 Conclusions;250
30.6;Acknowledgments;251
30.7;References;251
31;Intensive Robotics Education Approach in the Form of a Summer C252
31.1;1 Introduction and General Idea;252
31.2;2 Student Participants;253
31.3;3 Schedule;253
31.4;4 Means and Equipment;254
31.5;5 The Competition;254
31.6;6 Conclusion;255
31.7;References;256
32;Anthropomorphic Robots and Human Meaning Makers in Education;257
32.1;Abstract;257
32.2;1 Introduction;257
32.3;2 Anthropomorphism: Meanings Made;258
32.4;3 Anthropomorphic Robots: Meanings Disrupted;258
32.5;4 Human Meaning Makers;259
32.6;5 Conclusions;260
32.7;Acknowledgements;260
32.8;References;260
33;Author Index;262