Alefeld / Obermaier / Lenhardt | Parallele numerische Verfahren | Buch | 978-3-540-42519-9 | sack.de

Buch, Deutsch, 248 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 406 g

Reihe: Masterclass

Alefeld / Obermaier / Lenhardt

Parallele numerische Verfahren


2002
ISBN: 978-3-540-42519-9
Verlag: Springer Berlin Heidelberg

Buch, Deutsch, 248 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 406 g

Reihe: Masterclass

ISBN: 978-3-540-42519-9
Verlag: Springer Berlin Heidelberg


Idealer Einstieg: Theorie und Praxis paralleler numerischer Verfahren anhand klassischer Algorithmen. Dargestellt sind Bereiche der numerischen linearen Algebra als auch der numerischen Analysis. Bei Aufbau und Erstellung paralleler Programme hilft die Programmbibliothek MPI. Anhand der Praktikumsaufgaben können Leser ihren Lernerfolg überprüfen. Quelltexte sind auf der Homepage der Autoren zu finden. Ein praxisorientiertes Lehr- und Übungsbuch für Mathematiker, Informatiker, Ingenieurwissenschaftler.

Alefeld / Obermaier / Lenhardt Parallele numerische Verfahren jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


1 Grundsätzliches über Parallelrechner.- 1.1 Rechnertypen und Architekt uren.- 1.2 Leistungsb eurt eilung von Par allelrechnern.- 1.3 Parallele Programmiermodelle.- 2 Parallele Verfahren für partielle Differentialgleichungen.- 2.1 Standardverfahren für elliptische Differentialgleichungen.- 2.2 Parallelisierung.- 2.3 Das ADI-Verfahren.- 3 Graph-Partitionierung.- 3.1 Hilfsmittel und Definitionen.- 3.2 Spektralbisektion.- 3.3 Weitere Partitionierungsheuristiken.- 4 Die Methode der konjugierten Gradienten.- 4.1 Sequentielle Durchführung.- 4.2 Das vorkonditionierte CG-Verfahren.- 4.3 Parallelisierung des CG-Verfahrens.- 5 Mehrgitterverfahren (Multi-Grid Method).- 5.1 Motivation.- 5.2 Übergang zwischen Gittern.- 5.3 Grobgitterkorrektur (Coarse Grid Correction).- 5.4 Interpolation und Prolongation im zweidimensionalen Fall.- 5.5 Bemerkungen zur Programmierung des Mehrgitterverfahrens.- 6 Das symmetrische Eigenwert-Problem.- 6.1 Das Jacobi-Verfahren zur Berechnung von Eigenwerten.- 6.2 Berechnung der Eigenwerte durch Reduktion der Matrix auf Tridiagonalgestalt.- 6.3 Ein Divide-and-Conquer- Verfahren („Teile-und-Herrsche-Verfahren“).- 7 Der Gauß-Algortthmus — Anwendung bei Integralgleichungen.- 7.1 Grundlagen.- 7.2 Das Nyström-Verfahren.- 7.3 Parallele Durchführung des Nyström-Verfahrens.- 8 Aufgaben für ein Parallelrechnerpraktikum.- 8.1 Elementare Aufgaben.- 8.2 Parallele Matrix-Vektor-Multiplikation für dichtbesetzte Matrizen.- 8.3 SOR-Verfahren mit Red-Black-Ordnung.- 8.4 Direktes Lösen von Gleichungssystemen mit Tridiagonalmatrix.- 8.5 Graphpartitionierung I.- 8.6 Graphpartitionierung II.- 8.7 CG-Verfahren.- 8.8 Jacobi-Verfahren zur Berechnung von Eigenwerten.- 8.9 Nyström-Verfahren.- A Ein Linux-Cluster als Parallelrechner.- A.l Hardware.- A.2Systemsoftware.- A.2.1 Betriebssystem-Installati on.- A.2.2 Nameservices.- A.2.3 NIS (Network Information Service).- A.2.4 NFS (Network File System).- A.2.5 Remote Shell (rsh) / Secure Shell (ssh).- A.2.6 Automatisierung durch Skripte.- A.3 Programmbiblioth eken zur parallelen Programmierung.- A.3.1 Programmerstellung.- A.3.2 Die Compiler mpicc, mpiCC und mpif77.- A.3.3 Starten und Beenden der Kommunikationsumgebung mit lamboot und lamwipe.- A.3.4 Starten von parallelen Programmen mit mpirun.- A.3.5 MPI-Kurzreferenz.- Stichwortverzeichnis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.