Buch, Deutsch, 248 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 406 g
Reihe: Masterclass
Buch, Deutsch, 248 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 406 g
Reihe: Masterclass
ISBN: 978-3-540-42519-9
Verlag: Springer Berlin Heidelberg
Idealer Einstieg: Theorie und Praxis paralleler numerischer Verfahren anhand klassischer Algorithmen. Dargestellt sind Bereiche der numerischen linearen Algebra als auch der numerischen Analysis. Bei Aufbau und Erstellung paralleler Programme hilft die Programmbibliothek MPI. Anhand der Praktikumsaufgaben können Leser ihren Lernerfolg überprüfen. Quelltexte sind auf der Homepage der Autoren zu finden. Ein praxisorientiertes Lehr- und Übungsbuch für Mathematiker, Informatiker, Ingenieurwissenschaftler.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1 Grundsätzliches über Parallelrechner.- 1.1 Rechnertypen und Architekt uren.- 1.2 Leistungsb eurt eilung von Par allelrechnern.- 1.3 Parallele Programmiermodelle.- 2 Parallele Verfahren für partielle Differentialgleichungen.- 2.1 Standardverfahren für elliptische Differentialgleichungen.- 2.2 Parallelisierung.- 2.3 Das ADI-Verfahren.- 3 Graph-Partitionierung.- 3.1 Hilfsmittel und Definitionen.- 3.2 Spektralbisektion.- 3.3 Weitere Partitionierungsheuristiken.- 4 Die Methode der konjugierten Gradienten.- 4.1 Sequentielle Durchführung.- 4.2 Das vorkonditionierte CG-Verfahren.- 4.3 Parallelisierung des CG-Verfahrens.- 5 Mehrgitterverfahren (Multi-Grid Method).- 5.1 Motivation.- 5.2 Übergang zwischen Gittern.- 5.3 Grobgitterkorrektur (Coarse Grid Correction).- 5.4 Interpolation und Prolongation im zweidimensionalen Fall.- 5.5 Bemerkungen zur Programmierung des Mehrgitterverfahrens.- 6 Das symmetrische Eigenwert-Problem.- 6.1 Das Jacobi-Verfahren zur Berechnung von Eigenwerten.- 6.2 Berechnung der Eigenwerte durch Reduktion der Matrix auf Tridiagonalgestalt.- 6.3 Ein Divide-and-Conquer- Verfahren („Teile-und-Herrsche-Verfahren“).- 7 Der Gauß-Algortthmus — Anwendung bei Integralgleichungen.- 7.1 Grundlagen.- 7.2 Das Nyström-Verfahren.- 7.3 Parallele Durchführung des Nyström-Verfahrens.- 8 Aufgaben für ein Parallelrechnerpraktikum.- 8.1 Elementare Aufgaben.- 8.2 Parallele Matrix-Vektor-Multiplikation für dichtbesetzte Matrizen.- 8.3 SOR-Verfahren mit Red-Black-Ordnung.- 8.4 Direktes Lösen von Gleichungssystemen mit Tridiagonalmatrix.- 8.5 Graphpartitionierung I.- 8.6 Graphpartitionierung II.- 8.7 CG-Verfahren.- 8.8 Jacobi-Verfahren zur Berechnung von Eigenwerten.- 8.9 Nyström-Verfahren.- A Ein Linux-Cluster als Parallelrechner.- A.l Hardware.- A.2Systemsoftware.- A.2.1 Betriebssystem-Installati on.- A.2.2 Nameservices.- A.2.3 NIS (Network Information Service).- A.2.4 NFS (Network File System).- A.2.5 Remote Shell (rsh) / Secure Shell (ssh).- A.2.6 Automatisierung durch Skripte.- A.3 Programmbiblioth eken zur parallelen Programmierung.- A.3.1 Programmerstellung.- A.3.2 Die Compiler mpicc, mpiCC und mpif77.- A.3.3 Starten und Beenden der Kommunikationsumgebung mit lamboot und lamwipe.- A.3.4 Starten von parallelen Programmen mit mpirun.- A.3.5 MPI-Kurzreferenz.- Stichwortverzeichnis.