Alías / Rigoli / Mastrolia | Maximum Principles and Geometric Applications | Buch | 978-3-319-79605-5 | sack.de

Buch, Englisch, 570 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 896 g

Reihe: Springer Monographs in Mathematics

Alías / Rigoli / Mastrolia

Maximum Principles and Geometric Applications


Softcover Nachdruck of the original 1. Auflage 2016
ISBN: 978-3-319-79605-5
Verlag: Springer International Publishing

Buch, Englisch, 570 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 896 g

Reihe: Springer Monographs in Mathematics

ISBN: 978-3-319-79605-5
Verlag: Springer International Publishing


This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. 
In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on.
Maximum Principles and GeometricApplications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.
Alías / Rigoli / Mastrolia Maximum Principles and Geometric Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


A crash course in Riemannian geometry.- The Omori-Yau maximum principle.- New forms of the maximum principle.- Sufficient conditions for the validity of the weak maximum principle.- Miscellany results for submanifolds.- Applications to hypersurfaces.- Hypersurfaces in warped products.- Applications to Ricci Solitons.- Spacelike hypersurfaces in Lorentzian spacetimes.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.