Basics to Applications
Buch, Englisch, 210 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 388 g
ISBN: 978-981-19-3883-2
Verlag: Springer
This book includes the synthesis, analysis and characterization of nanomaterials that are an important ingredient in nanotechnologies. Nanomaterials contain nanoparticles, smaller than 100 nanometers in at least one dimension. Nanomaterials are coming into use in health care, electronics, cosmetics and other areas. Their physical and chemical properties differ from those of bulk materials. This needs to cover health risks to workers and potential risks to environment. This is currently done on a case-by-case basis, but risk assessment methods need to be kept up to date as the use of nanomaterials expands, especially as they find their way into consumer products. This book covers the basics to advanced applications of nanomaterials and provides a useful resource for researchers and professionals in the field.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Elektromagnetismus Quantenoptik, Nichtlineare Optik, Laserphysik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde
- Technische Wissenschaften Technik Allgemein Nanotechnologie
- Naturwissenschaften Physik Thermodynamik Festkörperphysik, Kondensierte Materie
Weitere Infos & Material
Chapter 1
PROPERTIES OF NANOMATERIALS
1.1 Introduction
1.1.1 What are nanomaterials?1.1.2 Where are nanomaterials found?
1.2 Advances in nanomaterials
1.3 Classification of nanomaterials
1.4 Why are nanomaterials important?
1.5 Types of nanomaterials
1.6 The nanoscience and nanotechnology
1.6.1 Characteristics of nanomaterials
1.7 Nano-effect
1.7.1 Exceptional optical properties 1.7.2 Exceptional thermal properties 1.7.3 Exceptional magnetic properties
1.7.4 Exceptional mechanical properties
1.7.5 Exceptional electrical properties
1.7.6 Natural nano-effect1.8 Physical principles of nano-effect
1.8.1 Discontinuity of electron levels 1.8.2 Kubo theory 1.8.3 Small size effect 1.8.4 Surface effect 1.8.5 Dielectric confinement effect
Problems
Chapter 2
Synthesis of nanomaterials
2.1 Introduction
2.1.1 Preparation of nanoparticles2.2 Icroemulsion-based methods
2.3 Carbon fullerenes
2.4 Synthesis of nanowires, nanorods and nanotubes
2.4.1 rods
Problems
Chapter 3
Characterization and analysis of nanomaterials3.1 Introduction
3.2 Detection and analysis of particle size3.3 Detection and analysis of the electrical properties
3.4 Detection and analysis of magnetic properties
3.5 Detection and analysis of the mechanical properties
3.6 Detection and analysis of thermal properties
3.7 Detection and analysis of optical properties
3.8 Scanning probe microscopy
3.9 Principles of scanning tunneling microscopy
3.9.1 Operating mode of STM 3.9.2 STM application: atomic manipulation
3.9.3 Advantages of STM
3.10 Atomic force microscopy
3.10.1 Principle of AFM3.10.2 Comparison of the AFM scanning modes
3.10.3 Application examples of AFM
Problems
Chapter 4
Mechanical and magnetic properties of nanomaterials4.1 Introduction 4.2 Mechanical behavior
4.2.1 Elastic properties of nanocrystalline metals
4.2.2 Hardness, yield and ultimate strengths
4.2.3 Mechanical properties at room and elevated temperatures
4.2.4 Strength of amorphous alloys containing nanoscale particles4.2.5 Deformation behavior of nanostructured alloys
4.3 Structure and soft magnetic properties
4.4 Effect of grain-size distribution and Curie temperature of intergranular amorphous phase on soft magnetic properties
4.5 Magnetic properties
Problems
CHAPTER 5
Electrical and optical properties of nanomaterials5.1 Introduction 5.2 Metals 5.2.1 Quantum transport of electrons 5.2.2 Electrical conductivity 5.2.2.1 Atomic structure and mechanical properties
5.2.2. Electrical conductance of nanowires
5.2.3 Surface plasmons 5.2.3.1 Dipole plasmon resonances 5.2.3.2 Quadrupole plasmon resonances 5.2.3.3 Extinction for silver spheres 5.2.3.4 Electromagnetic fields for spherical particles 5.3 Semiconductor 5.3.1 Band gap modification
5.3.2 Quantum size effects
5.3.3 Quantization and energy level spacing
5.3.4 Optical properties
Problems
CHAPTER 6
Nanodevices and nanostructures6.1 Introduction
6.2 General scheme of nanodevices
6.3 Nanocomponents
6.3.1 DNA
6.3.2 Carbon nanotubes and fullerenes
6.4 Nanoelectronics
6.5 Nanostructured materials
6.5.1 Nanoparticle properties 6.5.2 Nanoalloys6.6 Prospects for future modeling
ProblemsCHAPTER 7
CARBON NANOTUBES7.1 Introduction
7.1.1 Structures of carbon allotropes
7.1.2 Single-layer graphite material (graphene)
7.2 Types and nature of CNTs 7.2.1 Types of CNTs7.2.2 Characteristics of CNTs
7.2.2.1 Mechanical properties
7.2.2.2 Electrical characteristics7.2.2.3 Thermal properties
7.2.2.4 Superconducting phenomenon of CNTs7.2.2.5 Chemical properties
7.3 Electronic structure of CNTs7.3.1 p-electron orbital and the energy of the conjugated molecule in planar structure
7.3.2 Electronic structure of graphite
7.4 Preparation of CNTs7.5 Applications of CNTs
7.5.1 CNT electronics
7.5.1.1 The limits of microelectronics technology and the emergence of nanoelectronics
7.6 Single-electron transistor
7.7 CNT electronics
7.7.1 Quantum wire
7.7.2 CNT-based junction
7.7.3 SET with CNTs
7.7.4 CNT-based FET
7.7.5 Complementary nongate (Inverter) circuit with CNTs 7.8 Other applications of CNTs7.8.1 Nano test tubes
7.8.2 Nanobalance7.8.3 Nanomolds
7.8.4 CNTs: Field emission cathode materials
7.8.5 Application of CNTs in hydrogen storage
7.8.6 High-energy microbattery 7.8.7 High-energy capacitor 7.8.8 Chip thermal/heat protection7.8.9 Nanoreactor
7.8.10 Nanocomposite materials
Problems
CHAPTER 8
SEMICONDUCTOR QUANTUM DOTS8.1 Introduction
8.2 The physical basis of semiconductor QDs8.2.1 Quantum confinement effect 8.2.2 Excitons and luminescence
8.2.2.1 The concept of excitons
8.2.2.2 Energy band structure of excitons
8.2.2.3 Calculations of the exciton binding energy
8.3 Preparation of semiconductor QDs8.4 Laser devices based on QDs
8.5 Single-photon source Problems
CHAPTER 9
Superconductivity9.1 Introduction
9.2 The Physical principles of superconductivity9.3 The classification of superconductors 9.3.1 Low-temperature superconductors 9.3.2 High-temperature superconductors 9.3.3 Other novel superconductors 9.4 Nanosuperconductors
9.4.1 Incredible magnetic nanoclusters
9.4.2 Quantum fluctuations and strong correlation in nanowires
9.4.3 Ultrathin film
9.4.4 Nanosuperconductors and hybrid structures
9.4.5 Links between superconductors and nanostructure 9.5 Application of nanosuperconductors9.5.1 Quantum computers 9.5.2 Nanosuperconductor quantum bits
Problems
CHAPTER 10
Multi-application of nanomaterials
10.1 Introduction
10.2 Amorphous silicon/oxide superlattice
10.3 Single-electron transistor
10.4 Quantum dot laser
10.5 Epilogue 10.6 Chemical and biological sensors10.7 Optical sensors
10.8 Catalysis
10.9 Future issues
Problems
Refernces
Index



