Aitken / Aggarwal / Carreira | Science of Synthesis Knowledge Updates 2012 Vol. 2 | E-Book | sack.de
E-Book

E-Book, Englisch, 552 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

Aitken / Aggarwal / Carreira Science of Synthesis Knowledge Updates 2012 Vol. 2

E-Book, Englisch, 552 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

ISBN: 978-3-13-178821-4
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Science of Synthesis is a reference work for preparative
methods in synthetic chemistry. Its product-based classification system enables
chemists to easily find solutions to their synthetic problems.

Key Features:

- Critical selection of reliable synthetic methods,
saving the researcher the time required to find procedures in the primary
literature. - Expertise provided by leading chemists. - Detailed experimental procedures. - The information is highly organized in a
logical format to allow easy access to the relevant
information.
Aitken / Aggarwal / Carreira Science of Synthesis Knowledge Updates 2012 Vol. 2 jetzt bestellen!

Zielgruppe


Wissenschaftler

Weitere Infos & Material


1;Science of Synthesis: Knowledge Updates 2012/2;1
1.1;Title page;5
1.2;Imprint;7
1.3;Preface;8
1.4;Abstracts;10
1.5;Overview;18
1.6;Table of Contents;20
1.7;Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds;42
1.7.1;4.4 Product Class 4: Silicon Compounds;42
1.7.1.1;4.4.25.11 Acylsilanes;42
1.7.1.1.1;4.4.25.11.1 Synthesis of Acylsilanes;42
1.7.1.1.1.1;4.4.25.11.1.1 Method 1: Synthesis of Simple Acylsilanes;42
1.7.1.1.1.1.1;4.4.25.11.1.1.1 Variation 1: Hydrolysis of Acetals;42
1.7.1.1.1.1.2;4.4.25.11.1.1.2 Variation 2: Oxidation of Organocuprates;44
1.7.1.1.1.1.3;4.4.25.11.1.1.3 Variation 3: Nucleophilic Substitution of Morpholine Amides;48
1.7.1.1.1.1.4;4.4.25.11.1.1.4 Variation 4: Additional Synthetic Methods;49
1.7.1.1.1.2;4.4.25.11.1.2 Method 2: Synthesis of Bis(acylsilanes);51
1.7.1.1.1.3;4.4.25.11.1.3 Method 3: Synthesis of a-Oxo Acylsilanes;54
1.7.1.1.1.4;4.4.25.11.1.4 Method 4: Synthesis of a,ß-Unsaturated Acylsilanes;56
1.7.1.1.1.5;4.4.25.11.1.5 Method 5: Synthesis of a-Amino Acylsilanes;57
1.7.1.1.2;4.4.25.11.2 Applications of Acylsilanes;59
1.7.1.1.2.1;4.4.25.11.2.1 Method 1: Applications of Simple Acylsilanes;59
1.7.1.1.2.1.1;4.4.25.11.2.1.1 Variation 1: Nucleophilic Addition;59
1.7.1.1.2.1.2;4.4.25.11.2.1.2 Variation 2: Nucleophilic Addition with Brook Rearrangement;68
1.7.1.1.2.1.3;4.4.25.11.2.1.3 Variation 3: Acylsilanes as Acyl Anion Precursors;81
1.7.1.1.2.1.4;4.4.25.11.2.1.4 Variation 4: Enolate and Enol Ether Reactions;94
1.7.1.1.2.1.5;4.4.25.11.2.1.5 Variation 5: Photochemistry;95
1.7.1.1.2.1.6;4.4.25.11.2.1.6 Variation 6: Miscellaneous Applications;99
1.7.1.1.2.2;4.4.25.11.2.2 Method 2: Applications of Bis(acylsilanes);103
1.7.1.1.2.3;4.4.25.11.2.3 Method 3: Applications of a-Oxo Acylsilanes;106
1.7.1.1.2.4;4.4.25.11.2.4 Method 4: Applications of a,ß-Unsaturated Acylsilanes;117
1.8;Volume 8: Compounds of Group 1 (Li … Cs);126
1.8.1;8.1 Product Class 1: Lithium Compounds;126
1.8.1.1;8.1.34 Asymmetric Lithiation;126
1.8.1.1.1;8.1.34.1 Method 1: Deprotonation in a Position a to a Heteroatom;128
1.8.1.1.1.1;8.1.34.1.1 Variation 1: Enantioselective Deprotonation of Carbamates and Their Analogues;128
1.8.1.1.1.2;8.1.34.1.2 Variation 2: Enantioselective Deprotonation of Phosphorylated Derivatives;134
1.8.1.1.1.3;8.1.34.1.3 Variation 3: Enantioselective Deprotonation of Ureas;138
1.8.1.1.1.4;8.1.34.1.4 Variation 4: Enantioselective Deprotonation of Phosphoramidates;140
1.8.1.1.1.5;8.1.34.1.5 Variation 5: Enantioselective Deprotonation Followed by Transmetalation;141
1.8.1.1.1.6;8.1.34.1.6 Variation 6: Enantioselective Deprotonation Followed by Cyclization;147
1.8.1.1.1.7;8.1.34.1.7 Variation 7: Enantioselective Deprotonation Followed by Wittig Rearrangement;150
1.8.1.1.1.8;8.1.34.1.8 Variation 8: Diastereoselective Deprotonation of Carbamates;155
1.8.1.1.1.9;8.1.34.1.9 Variation 9: Diastereoselective and Enantioselective Deprotonations of Epoxides or Aziridines;159
1.8.1.1.1.10;8.1.34.1.10 Variation 10: Catalytic Enantioselective Deprotonation;161
1.8.1.1.2;8.1.34.2 Method 2: Deprotonation in a Position Lacking an a-Heteroatom;166
1.8.1.1.2.1;8.1.34.2.1 Variation 1: Diastereoselective Deprotonation in a Benzylic Position;166
1.8.1.1.2.2;8.1.34.2.2 Variation 2: Enantioselective Deprotonation in a Benzylic Position;167
1.8.1.1.2.3;8.1.34.2.3 Variation 3: Diastereoselective Deprotonation of Metallocene Derivatives;169
1.8.1.1.2.4;8.1.34.2.4 Variation 4: Enantioselective Deprotonation of Metallocene Derivatives;171
1.8.1.1.3;8.1.34.3 Method 3: Tin–Lithium Exchange;173
1.8.1.1.4;8.1.34.4 Method 4: Reductive Lithiation;176
1.8.1.1.5;8.1.34.5 Method 5: Carbometalation;177
1.8.1.1.5.1;8.1.34.5.1 Variation 1: Enantioselective Intermolecular Carbolithiation;177
1.8.1.1.5.2;8.1.34.5.2 Variation 2: Enantioselective and Diastereoselective Intramolecular Carbolithiation;180
1.9;Volume 13: Five-Membered Hetarenes with Three or More Heteroatoms;190
1.9.1;13.32 Product Class 32: 1,2,3-Trithioles, Their Benzo Derivatives, and Selenium and Tellurium Analogues;190
1.9.1.1;13.32.1 Product Subclass 1: 1,2,3-Trithioles;190
1.9.1.1.1;13.32.1.1 Synthesis by Ring-Closure Reactions;191
1.9.1.1.1.1;13.32.1.1.1 By Formation of Two S--S Bonds;191
1.9.1.1.1.1.1;13.32.1.1.1.1 Method 1: Synthesis from Metal Enedithiolates with Thionyl Chloride;191
1.9.1.1.1.2;13.32.1.1.2 By Formation of Two C--S Bonds;191
1.9.1.1.1.2.1;13.32.1.1.2.1 Method 1: Synthesis from Alkynes with Sulfur;191
1.9.1.1.2;13.32.1.2 Synthesis by Ring Transformation;192
1.9.1.1.2.1;13.32.1.2.1 Method 1: Formal Germanium/Sulfur Exchange of a 1,3,2-Dithiagermole with Thionyl Chloride;192
1.9.1.1.2.2;13.32.1.2.2 Method 2: Formal Ring Expansion with the Insertion of an Extra Sulfur Atom;193
1.9.1.2;13.32.2 Product Subclass 2: 1,2,3-Benzotrithioles and Other Ring-Fused Analogues;194
1.9.1.2.1;13.32.2.1 Synthesis by Ring-Closure Reactions;195
1.9.1.2.1.1;13.32.2.1.1 By Formation of Two S--S Bonds and One C--C Bond;195
1.9.1.2.1.1.1;13.32.2.1.1.1 Method 1: Electrochemical Reduction of Carbon Disulfide;195
1.9.1.2.1.2;13.32.2.1.2 By Formation of Two S--S Bonds;196
1.9.1.2.1.2.1;13.32.2.1.2.1 Method 1: Synthesis from Arene-1,2-dithiols;196
1.9.1.2.1.2.1.1;13.32.2.1.2.1.1 Variation 1: Reactions with Sulfur Dichloride;196
1.9.1.2.1.2.1.2;13.32.2.1.2.1.2 Variation 2: Reactions with Thionyl Chloride;196
1.9.1.2.1.2.1.3;13.32.2.1.2.1.3 Variation 3: Reactions with Thionyl Chloride, Sodium Iodide, and Perchloric Acid;197
1.9.1.2.1.2.2;13.32.2.1.2.2 Method 2: Synthesis from Metal Enedithiolates with Sulfur Dichloride;198
1.9.1.2.1.2.2.1;13.32.2.1.2.2.1 Variation 1: Reactions with Lithium or Sodium Enedithiolates;198
1.9.1.2.1.2.2.2;13.32.2.1.2.2.2 Variation 2: Reactions with Zinc Enedithiolates;199
1.9.1.2.1.3;13.32.2.1.3 By Formation of Two C--S Bonds;200
1.9.1.2.1.3.1;13.32.2.1.3.1 Method 1: Synthesis from 1,2-Dibromoarenes with Sulfur;200
1.9.1.2.1.3.1.1;13.32.2.1.3.1.1 Variation 1: Reactions in Liquid Ammonia;200
1.9.1.2.1.3.1.2;13.32.2.1.3.1.2 Variation 2: Reaction in Diazabicycloundecene;201
1.9.1.2.2;13.32.2.2 Synthesis by Ring Transformation;201
1.9.1.2.2.1;13.32.2.2.1 Method 1: Synthesis from 1,3,2-Dithiametalloles;201
1.9.1.2.2.1.1;13.32.2.2.1.1 Variation 1: Reactions of 1,3,2-Benzodithiatitanoles with Sulfur Dichloride;202
1.9.1.2.2.1.2;13.32.2.2.1.2 Variation 2: Reactions of 1,3,2-Benzodithiastannoles with Sulfur Dichloride;202
1.9.1.2.2.1.3;13.32.2.2.1.3 Variation 3: Reactions of 1,3,2-Benzodithiastannoles with Thionyl Chloride;203
1.9.1.2.2.1.4;13.32.2.2.1.4 Variation 4: Reactions of 1,3,2-Benzodithiastannoles with Thionyl Chloride, Sodium Iodide, and Perchloric Acid;204
1.9.1.2.2.1.5;13.32.2.2.1.5 Variation 5: Reactions of 1,3,2-Benzodithiastannoles with Thionyl Chloride, Trimethylsilyl Trifluoromethanesulfonate, and Samarium(II) Iodide;206
1.9.1.2.2.2;13.32.2.2.2 Method 2: Synthesis from 1,2,3-Benzochalcogenadiazoles with Sulfur;207
1.9.1.2.2.2.1;13.32.2.2.2.1 Variation 1: Reactions of 1,2,3-Benzothiadiazoles;207
1.9.1.2.2.2.2;13.32.2.2.2.2 Variation 2: Reactions with 1,2,3-Benzoselenadiazoles;207
1.9.1.2.2.3;13.32.2.2.3 Method 3: Synthesis from 1,3-Benzodithiol-2-ones;208
1.9.1.2.2.3.1;13.32.2.2.3.1 Variation 1: Reactions with Sodium Hydrogen Sulfide;208
1.9.1.2.2.3.2;13.32.2.2.3.2 Variation 2: Reactions with an Alkyllithium and Sulfur Dichloride;209
1.9.1.2.2.3.3;13.32.2.2.3.3 Variation 3: Reactions with a Sodium Alkoxide and Sulfur Dichloride;210
1.9.1.2.2.4;13.32.2.2.4 Method 4: Synthesis from 1,3-Benzodithiole-2-thiones;210
1.9.1.2.2.5;13.32.2.2.5 Method 5: Ring Contraction;211
1.9.1.2.2.5.1;13.32.2.2.5.1 Variation 1: Synthesis from 1,3,5,2,4-Benzotrithiadiazepines by Thermolysis;211
1.9.1.2.2.5.2;13.32.2.2.5.2 Variation 2: Synthesis from Benzopentathiepins;212
1.9.1.2.3;13.32.2.3 Synthesis by Substituent Modification;213
1.9.1.2.3.1;13.32.2.3.1 One-Electron Oxidation;213
1.9.1.2.3.1.1;13.32.2.3.1.1 Method 1: Synthesis from 1,2,3-Benzotrithioles with Nitrosonium Hexafluorophosphate To Give Radical Cationic Salts;213
1.9.1.2.3.2;13.32.2.3.2 Addition Reactions;214
1.9.1.2.3.2.1;13.32.2.3.2.1 Method 1: Synthesis from 1,2,3-Benzotrithioles by Oxidation;214
1.9.1.2.3.3;13.32.2.3.3 Rearrangement of Substituents;215
1.9.1.2.3.3.1;13.32.2.3.3.1 Method 1: Synthesis from 1,2,3-Benzotrithiole 2-Oxides by Photochemical Rearrangement;215
1.9.1.3;13.32.3 Product Subclass 3: 1,2,3-Benzodithiaselenoles;216
1.9.1.3.1;13.32.3.1 Synthesis by Ring-Closure Reactions;217
1.9.1.3.1.1;13.32.3.1.1 By Formation of One S--S and One S--Se Bond;217
1.9.1.3.1.1.1;13.32.3.1.1.1 Method 1: Synthesis from 2-(Chlorosulfonyl)benzeneselenenyl Bromide and Thioacetamide;217
1.9.1.3.2;13.32.3.2 Synthesis by Ring Transformation;217
1.9.1.3.2.1;13.32.3.2.1 Method 1: Synthesis from 1,3,2-Benzothiaselenastannoles;217
1.9.1.3.2.1.1;13.32.3.2.1.1 Variation 1: Reactions with Sulfur in Liquid Ammonia;217
1.9.1.3.2.1.2;13.32.3.2.1.2 Variation 2: Reactions with Thionyl Chloride, Sodium Iodide, and Perchloric Acid;218
1.9.1.4;13.32.4 Product Subclass 4: 1,3,2-Benzodithiaselenoles;219
1.9.1.4.1;13.32.4.1 Synthesis by Ring-Closure Reactions;219
1.9.1.4.1.1;13.32.4.1.1 By Formation of Two S--Se Bonds;219
1.9.1.4.1.1.1;13.32.4.1.1.1 Method 1: Reactions of Arene-1,2-dithiols with Selenium Dioxide;219
1.9.1.4.2;13.32.4.2 Synthesis by Ring Transformation;220
1.9.1.4.2.1;13.32.4.2.1 Method 1: Reactions of 1,3,2-Benzodithiastannoles with Selenium Oxychloride, Trimethylsilyl Trifluoromethanesulfonate, and Samarium(II) Iodide;220
1.9.1.5;13.32.5 Product Subclass 5: 1,2,3-Benzothiadiselenoles;221
1.9.1.5.1;13.32.5.1 Synthesis by Ring Transformation;221
1.9.1.5.1.1;13.32.5.1.1 Method 1: Synthesis from 1,3,2-Benzothiaselenastannoles with Selenium Oxychloride, Trimethylsilyl Trifluoromethanesulfonate, and Samarium(II) Iodide;221
1.9.1.5.1.2;13.32.5.1.2 Method 2: Ring Contraction of Dibenzo-1,2,5,6- and 1,5,2,6-Dithiadiselenocins by Photolysis;222
1.9.1.6;13.32.6 Product Subclass 6: 2,1,3-Benzothiadiselenoles;222
1.9.1.6.1;13.32.6.1 Synthesis by Ring Transformation;222
1.9.1.6.1.1;13.32.6.1.1 Method 1: Synthesis from 1,3,2-Benzodiselenastannoles;222
1.9.1.6.1.1.1;13.32.6.1.1.1 Variation 1: Reactions with Sulfur in Liquid Ammonia;222
1.9.1.6.1.1.2;13.32.6.1.1.2 Variation 2: Reactions with Thionyl Chloride, Sodium Iodide, and Perchloric Acid;223
1.9.1.6.1.2;13.32.6.1.2 Method 2: Synthesis from 1,2,3-Benzotriselenoles with Sulfur;224
1.9.1.7;13.32.7 Product Subclass 7: 1,2,3-Benzotriselenoles;224
1.9.1.7.1;13.32.7.1 Synthesis by Ring-Closure Reactions;224
1.9.1.7.1.1;13.32.7.1.1 By Formation of Two Se--Se Bonds;224
1.9.1.7.1.1.1;13.32.7.1.1.1 Method 1: Synthesis from Dilithium Arene-1,2-diselenolates with Selenium Tetrachloride;224
1.9.1.7.1.1.2;13.32.7.1.1.2 Method 2: Synthesis from Benzene-1,2-diselenenyl Dichloride with Selenium;225
1.9.1.7.1.2;13.32.7.1.2 By Formation of Two Se--C Bonds;225
1.9.1.7.1.2.1;13.32.7.1.2.1 Method 1: Synthesis from 1,2-Dibromoarenes with Selenium;225
1.9.1.7.1.2.2;13.32.7.1.2.2 Method 2: Reactions of Tribenzo-1,4,7-trimercuronins with Selenium;226
1.9.1.7.2;13.32.7.2 Synthesis by Ring Transformation;227
1.9.1.7.2.1;13.32.7.2.1 Method 1: Synthesis from 1,3,2-Benzodiselenastannoles;227
1.9.1.7.2.1.1;13.32.7.2.1.1 Variation 1: Reactions with Selenium Oxychloride, Trimethylsilyl Trifluoromethanesulfonate, and Samarium(II) Iodide;227
1.9.1.7.2.1.2;13.32.7.2.1.2 Variation 2: Reaction with Selenium Tetrachloride;228
1.9.1.7.2.2;13.32.7.2.2 Method 2: Reactions of 1,2,3-Benzoselenadiazoles with Selenium;228
1.9.1.7.2.3;13.32.7.2.3 Method 3: By Ring Contraction;228
1.9.1.7.2.3.1;13.32.7.2.3.1 Variation 1: Synthesis from Dibenzo-1,2,5,6-tetraselenocins by Photolysis;228
1.9.1.7.2.3.2;13.32.7.2.3.2 Variation 2: Synthesis from Dibenzo-1,2,5,6-tetraselenocin with Diselenium Dichloride;229
1.9.1.7.3;13.32.7.3 Synthesis by Substituent Modification;229
1.9.1.7.3.1;13.32.7.3.1 One-Electron Oxidation;229
1.9.1.7.3.1.1;13.32.7.3.1.1 Method 1: Synthesis from 1,2,3-Benzotriselenoles with Nitrosonium Hexafluorophosphate To Give Radical Cationic Salts;229
1.9.1.8;13.32.8 Product Subclass 8: 1,2,3-Benzodithiatelluroles;230
1.9.1.8.1;13.32.8.1 Synthesis by Ring Transformation;230
1.9.1.8.1.1;13.32.8.1.1 Method 1: Synthesis from 1,3,2-Benzothiatelluratitanoles with Sulfur Dichloride;230
1.9.1.9;13.32.9 Product Subclass 9: 1,3,2-Dithiatelluroles and 1,3,2-Benzodithiatelluroles;231
1.9.1.9.1;13.32.9.1 Synthesis by Ring-Closure Reactions;231
1.9.1.9.1.1;13.32.9.1.1 By Formation of Two S--Te Bonds;231
1.9.1.9.1.1.1;13.32.9.1.1.1 Method 1: Synthesis from Arene-1,2-dithiols with Tellurium Tetrachloride;231
1.9.1.9.1.1.2;13.32.9.1.1.2 Method 2: Synthesis from Metal Enedithiolates;232
1.9.1.9.1.1.2.1;13.32.9.1.1.2.1 Variation 1: Reactions with Tellurium Tetrahalides;232
1.9.1.9.1.1.2.2;13.32.9.1.1.2.2 Variation 2: Reactions with Sodium Tellurapentathionate;232
1.9.1.9.2;13.32.9.2 Synthesis by Ring Transformation;233
1.9.1.9.2.1;13.32.9.2.1 Method 1: Synthesis from 1,3,2-Benzodithiastannoles with Tellurium Tetrachloride;233
1.9.1.10;13.32.10 Product Subclass 10: 1,2,3-Benzothiaselenatelluroles;234
1.9.1.10.1;13.32.10.1 Synthesis by Ring Transformation;234
1.9.1.10.1.1;13.32.10.1.1 Method 1: Synthesis from 1,3,2-Benzothiatelluratitanoles with Selenium Oxychloride;234
1.9.1.11;13.32.11 Product Subclass 11: 1,3,2-Benzothiaselenatelluroles;235
1.9.1.11.1;13.32.11.1 Synthesis by Ring Transformation;235
1.9.1.11.1.1;13.32.11.1.1 Method 1: Synthesis from 1,3,2-Benzothiaselenastannoles with Tellurium Tetrachloride;235
1.9.1.12;13.32.12 Product Subclass 12: 2,1,3-Benzothiaselenatelluroles;235
1.9.1.12.1;13.32.12.1 Synthesis by Ring Transformation;235
1.9.1.12.1.1;13.32.12.1.1 Method 1: Synthesis from a 1,3,2-Benzoselenatelluratitanole with Sulfur Dichloride;235
1.9.1.13;13.32.13 Product Subclass 13: 1,2,3-Benzodiselenatelluroles;236
1.9.1.13.1;13.32.13.1 Synthesis by Ring Transformation;236
1.9.1.13.1.1;13.32.13.1.1 Method 1: Synthesis from 1,3,2-Benzoselenatelluratitanoles with Selenium Oxychloride;236
1.9.1.14;13.32.14 Product Subclass 14: 1,3,2-Benzodiselenatelluroles;236
1.9.2;13.33 Product Class 33: 1,2,4-Triazolium Salts;240
1.9.2.1;13.33.1 Synthesis by Ring-Closure Reactions;241
1.9.2.1.1;13.33.1.1 By Formation of Two N--C Bonds;241
1.9.2.1.1.1;13.33.1.1.1 Formation of the N2--C3 and N4--C5 Bonds;241
1.9.2.1.1.1.1;13.33.1.1.1.1 Method 1: Reaction of an Imidoyl Chloride with an N-Formylhydrazine;241
1.9.2.1.1.2;13.33.1.1.2 Formation of the N1--C5 and N4--C5 Bonds;242
1.9.2.1.1.2.1;13.33.1.1.2.1 Method 1: Reaction of an a-Aminohydrazone with a Trialkyl Orthoformate;242
1.9.2.1.1.2.1.1;13.33.1.1.2.1.1 Variation 1: Reaction Using a One-Pot Protocol;242
1.9.2.1.1.2.1.2;13.33.1.1.2.1.2 Variation 2: Reaction Using an Electron-Deficient Arylhydrazine;243
1.9.2.1.1.2.1.3;13.33.1.1.2.1.3 Variation 3: Synthesis of N-Mesityl-Substituted Triazolium Salts;244
1.9.2.1.1.2.1.4;13.33.1.1.2.1.4 Variation 4: Reaction Using Dimethyl Sulfate as the Amide-Activating Agent;246
1.9.2.1.1.2.1.5;13.33.1.1.2.1.5 Variation 5: Synthesis of 2-Alkyl-[1,2,4]triazolo[4,3-a]pyridinium Salts;247
1.9.2.1.1.2.1.6;13.33.1.1.2.1.6 Variation 6: Synthesis of 2-Aryl-[1,2,4]triazolo[4,3-a]pyridinium Salts;248
1.9.2.2;13.33.2 Synthesis by Ring Transformation;248
1.9.2.2.1;13.33.2.1 Formal Exchange of Ring Members with Retention of Ring Size;248
1.9.2.2.1.1;13.33.2.1.1 Method 1: Synthesis from 1,3,4-Oxadiazolium Salts;248
1.9.2.2.1.2;13.33.2.1.2 Method 2: Synthesis from 1,3,4-Thiadiazolium Salts;250
1.9.2.3;13.33.3 Synthesis by Substituent Modification;251
1.9.2.3.1;13.33.3.1 Addition Reactions;251
1.9.2.3.1.1;13.33.3.1.1 Addition of Organic Groups;251
1.9.2.3.1.1.1;13.33.3.1.1.1 Method 1: Alkylation Using an Alkyl Chloride, Bromide, or Iodide;251
1.9.2.3.1.1.2;13.33.3.1.1.2 Method 2: Alkylation Using a Trialkyloxonium Tetrafluoroborate;251
1.9.2.3.2;13.33.3.2 Modification of Substituents;252
1.9.2.3.2.1;13.33.3.2.1 Method 1: Paal–Knorr Pyrrole Synthesis Using an Amine-Functionalized Triazolium Salt;252
1.9.2.3.2.2;13.33.3.2.2 Method 2: Modification by Anion Exchange;253
1.9.2.3.2.2.1;13.33.3.2.2.1 Variation 1: Of 1,2,4-Triazolium Halides;253
1.9.2.3.2.2.2;13.33.3.2.2.2 Variation 2: With Silver Salts;254
1.9.3;13.34 Product Class 34: Dithiadiazolium Salts and Dithiadiazolyl-Containing Compounds;256
1.9.3.1;13.34.1 Product Subclass 1: 1,2,3,5-Dithiadiazolium Salts and Related Compounds;258
1.9.3.1.1;13.34.1.1 Synthesis by Ring-Closure Reactions;259
1.9.3.1.1.1;13.34.1.1.1 By Formation of One S--S and Two S--N Bonds;259
1.9.3.1.1.1.1;13.34.1.1.1.1 Method 1: Synthesis from Amidines Using Sulfur Halides;259
1.9.3.1.1.1.1.1;13.34.1.1.1.1.1 Variation 1: Reaction of Amidinium Salts with Sulfur Dichloride and 1,8-Diazabicyclo[5.4.0]undec-7-ene;259
1.9.3.1.1.1.1.2;13.34.1.1.1.1.2 Variation 2: Reaction of Amidinium Salts with Sulfur Monochloride;260
1.9.3.1.1.1.1.3;13.34.1.1.1.1.3 Variation 3: Reaction of N,N,N'-Tris(trimethylsilyl)amidines with Sulfur Dichloride;260
1.9.3.1.1.1.2;13.34.1.1.1.2 Method 2: Reaction of Amidoximes with Sulfur Dichloride;261
1.9.3.1.1.2;13.34.1.1.2 By Formation of One S--S, One S--N, and One N--C Bond;262
1.9.3.1.1.2.1;13.34.1.1.2.1 Method 1: Synthesis from Nitriles;262
1.9.3.1.1.2.1.1;13.34.1.1.2.1.1 Variation 1: Reaction with Sulfur Dichloride and Ammonium Chloride;262
1.9.3.1.1.2.1.2;13.34.1.1.2.1.2 Variation 2: Reaction with Trithiazyl Trichloride;263
1.9.3.1.1.2.2;13.34.1.1.2.2 Method 2: Synthesis from Azines Using Trithiazyl Trichloride;263
1.9.3.1.1.3;13.34.1.1.3 By Formation of One S--S and Two N--C Bonds;264
1.9.3.1.1.3.1;13.34.1.1.3.1 Method 1: Synthesis from Alkenes Using Trithiazyl Trichloride;264
1.9.3.1.2;13.34.1.2 Synthesis by Ring Transformation;264
1.9.3.1.2.1;13.34.1.2.1 Method 1: Synthesis by One-Electron Reduction Using Zinc/Copper or Triphenylstibine;264
1.9.3.1.2.2;13.34.1.2.2 Method 2: Synthesis from 1,3-Dichloro-1,3,2,4,6-dithiatriazines by Thermolytic Ring Contraction;265
1.9.3.2;13.34.2 Product Subclass 2: 1,3,2,4-Dithiadiazolium Salts and Related Compounds;266
1.9.3.2.1;13.34.2.1 Synthesis by Ring-Closure Reactions;267
1.9.3.2.1.1;13.34.2.1.1 By Formation of One S--N and One S--C Bond;267
1.9.3.2.1.1.1;13.34.2.1.1.1 Method 1: Synthesis from Nitriles with Dithionitronium Hexafluoroarsenate;267
1.9.3.2.1.2;13.34.2.1.2 By Formation of One S--N and One N--C Bond;269
1.9.3.2.1.2.1;13.34.2.1.2.1 Method 1: Synthesis from Bifunctional Acyl Chlorides with an N,N'-Bis(trimethylsilyl)sulfur Diimide;269
1.9.3.2.2;13.34.2.2 Synthesis by Ring Transformation;270
1.9.3.2.2.1;13.34.2.2.1 Method 1: Synthesis by One-Electron Reduction Using Triphenylstibine;270
1.9.3.2.2.2;13.34.2.2.2 Method 2: Synthesis from a Dithiadiazastannole Using Carbonyl Difluoride;270
1.9.3.2.3;13.34.2.3 Synthesis by Substituent Modification;271
1.9.3.2.3.1;13.34.2.3.1 Method 1: Synthesis by O-Alkylation Using Methyl Fluorosulfonate;271
1.10;Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms;274
1.10.1;16.4 Product Class 4: 1,4-Dithiins;274
1.10.1.1;16.4.6 1,4-Dithiins;274
1.10.1.1.1;16.4.6.1 Synthesis by Ring-Closure Reactions;276
1.10.1.1.1.1;16.4.6.1.1 By Formation of Four S--C Bonds;276
1.10.1.1.1.1.1;16.4.6.1.1.1 Fragments C--C, C--C, and Two S Fragments;276
1.10.1.1.1.1.1.1;16.4.6.1.1.1.1 Method 1: Synthesis from (Z)-1,2-Dichloroethene and Sodium Sulfide;276
1.10.1.1.1.1.1.2;16.4.6.1.1.1.2 Method 2: Synthesis from Alkynes and Sulfur;277
1.10.1.1.1.2;16.4.6.1.2 By Formation of Two S--C Bonds;277
1.10.1.1.1.2.1;16.4.6.1.2.1 Fragments C--C--S--C--C and S;277
1.10.1.1.1.2.1.1;16.4.6.1.2.1.1 Method 1: Synthesis from 1-Bromo-4-phenoxybut-2-yne and Sodium Sulfide;277
1.10.1.1.1.2.2;16.4.6.1.2.2 Fragments S--C--C--S and C--C;278
1.10.1.1.1.2.2.1;16.4.6.1.2.2.1 Method 1: Synthesis from 1,2-Dihydroxyarenes and 1,2-Dithiols;278
1.10.1.1.1.2.2.2;16.4.6.1.2.2.2 Method 2: Synthesis from 1,2,3,4,5-Benzopentathiepin and Active Methylene Compounds;279
1.10.1.1.1.2.2.3;16.4.6.1.2.2.3 Method 3: Synthesis from 1,2,3,4,5-Pentathiepins and Alkynes;280
1.10.1.1.1.2.3;16.4.6.1.2.3 Fragments S--C--C and S--C--C;281
1.10.1.1.1.2.3.1;16.4.6.1.2.3.1 Method 1: Thermolysis of 1,2,3-Thiadiazoles;281
1.10.1.1.1.2.3.2;16.4.6.1.2.3.2 Method 2: Synthesis from 4-(Alkylamino)-4-oxobutanoic Acids and Thionyl Chloride;283
1.10.1.1.1.3;16.4.6.1.3 By Formation of One S--C Bond;284
1.10.1.1.1.3.1;16.4.6.1.3.1 Fragment S--C--C--S--C--C;284
1.10.1.1.1.3.1.1;16.4.6.1.3.1.1 Method 1: Synthesis from 2-Chloro-1-phenylethane-1,1-dithiol and Sodium Sulfide;284
1.10.1.1.1.3.1.2;16.4.6.1.3.1.2 Method 2: Synthesis from 1,8-Diketones;285
1.10.1.1.2;16.4.6.2 Synthesis by Ring Transformation;286
1.10.1.1.2.1;16.4.6.2.1 By Ring Contraction;286
1.10.1.1.2.1.1;16.4.6.2.1.1 Method 1: Synthesis by Photolysis of Unsaturated 18-Membered Thia-Crown Ethers;286
1.10.1.1.2.1.2;16.4.6.2.1.2 Method 2: Synthesis by Pummerer Dehydration of 3,8-Dihydro-1,2,5,6-dithiadiazocine 1-Oxides;286
1.10.1.1.3;16.4.6.3 Aromatization-Type Reactions;287
1.10.1.1.3.1;16.4.6.3.1 By Elimination;287
1.10.1.1.3.1.1;16.4.6.3.1.1 Method 1: Synthesis from 2-Chloro- and 2,3-Dichloro-1,4-dithianes;287
1.10.1.1.3.1.2;16.4.6.3.1.2 Method 2: Synthesis from 1,4-Dithiane-2,5-diol;288
1.10.1.1.4;16.4.6.4 Synthesis by Substituent Modification;289
1.10.1.1.4.1;16.4.6.4.1 Substitution of Existing Substituents;289
1.10.1.1.4.1.1;16.4.6.4.1.1 Of Hydrogen;289
1.10.1.1.4.1.1.1;16.4.6.4.1.1.1 Method 1: Introduction of Alkyl and Carboxamide Groups by Radical Substitution;289
1.10.1.1.4.2;16.4.6.4.2 Rearrangement of Substituents;291
1.10.1.1.4.2.1;16.4.6.4.2.1 Method 1: Isomerization of 1,4-Dithiins via Ring-Opening–Ring-Closing Reactions;291
1.10.1.1.4.3;16.4.6.4.3 Modification of Substituents;292
1.10.1.1.4.3.1;16.4.6.4.3.1 Modification of Sulfur Substituents;292
1.10.1.1.4.3.1.1;16.4.6.4.3.1.1 Method 1: Ring Opening of Acenaphtho[1,2-b][1,3]dithiolo[4,5-e][1,4]dithiin-9-one with Potassium tert-Butoxide;292
1.10.1.1.4.3.1.2;16.4.6.4.3.1.2 Method 2: Synthesis of Tin Dithiolates from Ketones by Grignard Reaction;293
1.10.2;16.18 Product Class 18: Pyridopyridazines;296
1.10.2.1;16.18.7 Pyridopyridazines;296
1.10.2.1.1;16.18.7.1 Pyrido[2,3-c]pyridazines;298
1.10.2.1.1.1;16.18.7.1.1 Synthesis by Ring-Closure Reactions;298
1.10.2.1.1.1.1;16.18.7.1.1.1 By Formation of One N--C and One C--C Bond;298
1.10.2.1.1.1.1.1;16.18.7.1.1.1.1 Method 1: Cyclization of 3-Aminopyridazine-4-carbonitrile with Malonates;298
1.10.2.1.1.1.2;16.18.7.1.1.2 By Formation of One N--N Bond;298
1.10.2.1.1.1.2.1;16.18.7.1.1.2.1 Method 1: Annulation of 3-(2-Nitrophenyl)quinolin-2-amine;298
1.10.2.1.2;16.18.7.2 Pyrido[2,3-d]pyridazines;300
1.10.2.1.2.1;16.18.7.2.1 Synthesis by Ring-Closure Reactions;300
1.10.2.1.2.1.1;16.18.7.2.1.1 By Formation of Two N--C Bonds;300
1.10.2.1.2.1.1.1;16.18.7.2.1.1.1 Method 1: Condensation of Hydrazine with a Dicarbonyl-Functionalized Piperidinone Scaffold;300
1.10.2.1.2.1.1.2;16.18.7.2.1.1.2 Method 2: Condensation of Hydrazine with 2-Formylquinoline-3-carboxylate;301
1.10.2.1.2.1.1.3;16.18.7.2.1.1.3 Method 3: Incorporating a (2-Formylpyridin-3-yl)copper Reagent in Pyrido[2,3-d]pyridazine Synthesis;302
1.10.2.1.2.1.1.4;16.18.7.2.1.1.4 Method 4: Suzuki Cross Coupling of Chloro(methoxy)pyridazin-3(2H)-ones;304
1.10.2.1.2.1.1.5;16.18.7.2.1.1.5 Method 5: Condensation of 5,6-Dicarbonyl-Functionalized Pyridinones with Hydrazine;305
1.10.2.1.2.1.2;16.18.7.2.1.2 By Formation of One N--C and One C--C Bond;307
1.10.2.1.2.1.2.1;16.18.7.2.1.2.1 Method 1: Condensation of Acetone with 5-Acetyl-4-amino-6-phenylpyridazin-3(2H)-one;307
1.10.2.1.2.2;16.18.7.2.2 Synthesis by Ring Transformation;308
1.10.2.1.2.2.1;16.18.7.2.2.1 By Ring Enlargement;308
1.10.2.1.2.2.1.1;16.18.7.2.2.1.1 Method 1: Condensation of Hydrazine with Pyridine-2,3-dicarboxylic Anhydride and 3-Benzoylpicolinic Acid;308
1.10.2.1.2.2.1.2;16.18.7.2.2.1.2 Method 2: Condensation of Hydrazine with Pyrrolo[3,4-c]pyridinone;311
1.10.2.1.3;16.18.7.3 Pyrido[3,2-c]pyridazines;313
1.10.2.1.3.1;16.18.7.3.1 Synthesis by Ring-Closure Reactions;313
1.10.2.1.3.1.1;16.18.7.3.1.1 By Formation of One N--N Bond;313
1.10.2.1.3.1.1.1;16.18.7.3.1.1.1 Method 1: Condensation and Reduction of 2-Amino-2'-nitrobiaryls;313
1.10.2.1.4;16.18.7.4 Pyrido[3,4-c]pyridazines;313
1.10.2.1.4.1;16.18.7.4.1 Synthesis by Ring-Closure Reactions;313
1.10.2.1.4.1.1;16.18.7.4.1.1 By Formation of One N--N and One N--C Bond;313
1.10.2.1.4.1.1.1;16.18.7.4.1.1.1 Method 1: Intramolecular Diazo Coupling of 4-Hetarylpyridin-3-amines;313
1.10.2.1.5;16.18.7.5 Pyrido[3,4-d]pyridazines;315
1.10.2.1.5.1;16.18.7.5.1 Synthesis by Ring Transformation;315
1.10.2.1.5.1.1;16.18.7.5.1.1 By Ring Enlargement;315
1.10.2.1.5.1.1.1;16.18.7.5.1.1.1 Method 1: Condensation of Hydrazine with 1H-Pyrrolo[3,4-c]pyridine-1,3(2H)-dione;315
1.10.2.1.5.1.1.2;16.18.7.5.1.1.2 Method 2: Ring Expansion of Pyrazolopyridines;316
1.10.2.1.5.1.1.3;16.18.7.5.1.1.3 Method 3: Insertion of Hydrazine into (Z)-3-Benzylidenefuro[3,4-c]pyridin-1(3H)-ones;317
1.10.2.1.6;16.18.7.6 Pyrido[4,3-c]pyridazines;319
1.10.2.1.6.1;16.18.7.6.1 Synthesis by Ring-Closure Reactions;319
1.10.2.1.6.1.1;16.18.7.6.1.1 By Formation of One N--C and One C--C Bond;319
1.10.2.1.6.1.1.1;16.18.7.6.1.1.1 Method 1: Fusion of an Aminouracil with a Chloropyridazinecarbonitrile or Pyridazines Having Vicinal Chloro and Carbonyl Groups;319
1.10.3;16.19 Product Class 19: Pyridopyrimidines;322
1.10.3.1;16.19.5 Pyridopyrimidines;322
1.10.3.1.1;16.19.5.1 Pyrido[2,3-d]pyrimidines;323
1.10.3.1.1.1;16.19.5.1.1 By Formation of Three N--C Bonds and One C--C Bond;323
1.10.3.1.1.1.1;16.19.5.1.1.1 Method 1: Cyclization of Acrylates, Functionalized Nitriles, and Guanidines or Amidines;323
1.10.3.1.1.2;16.19.5.1.2 By Formation of One N--C and Two C--C Bonds;324
1.10.3.1.1.2.1;16.19.5.1.2.1 Method 1: Cyclization of 2-Heterosubstituted 6-Aminopyrimidin-4(3H)-ones, Aldehydes, and Active Methylene Compounds;324
1.10.3.1.1.3;16.19.5.1.3 By Formation of Two N--C Bonds;328
1.10.3.1.1.3.1;16.19.5.1.3.1 Method 1: Cyclization of 2-Nitrogen-Functionalized Nicotinamides;328
1.10.3.1.1.4;16.19.5.1.4 By Formation of One N--C and One C--C Bond;332
1.10.3.1.1.4.1;16.19.5.1.4.1 Method 1: Cyclization of Pyrimidin-4-amines with a,ß-Unsaturated Carbonyl Compounds and Related Species;332
1.10.3.1.1.5;16.19.5.1.5 By Formation of One N--C Bond;336
1.10.3.1.1.5.1;16.19.5.1.5.1 Method 1: Dehydrative Cyclization of 2-Acetamidonicotinamides;336
1.10.3.1.1.5.2;16.19.5.1.5.2 Method 2: Cyclization of 5-(4-Aminopyrimidin-5-yl)-1H-imidazole-4-carbonitriles;337
1.10.3.1.1.6;16.19.5.1.6 By Formation of One C--C Bond;338
1.10.3.1.1.6.1;16.19.5.1.6.1 Method 1: Palladium-Catalyzed Intramolecular Arylation of 4-(2-Bromobenzylamino)pyrimidines;338
1.10.3.1.2;16.19.5.2 Pyrido[3,2-d]pyrimidines;339
1.10.3.1.2.1;16.19.5.2.1 By Formation of Three N--C Bonds;339
1.10.3.1.2.1.1;16.19.5.2.1.1 Method 1: Cycloamination of 3-Isocyanatopyridine-2-carboxylates;339
1.10.3.1.2.2;16.19.5.2.2 By Formation of One C--C Bond;341
1.10.3.1.2.2.1;16.19.5.2.2.1 Method 1: Palladium-Catalyzed Intramolecular Arylation of 5-(2-Halobenzylamino)pyrimidines;341
1.10.3.1.3;16.19.5.3 Pyrido[3,4-d]pyrimidines;342
1.10.3.1.3.1;16.19.5.3.1 By Formation of Two N--C Bonds;342
1.10.3.1.3.1.1;16.19.5.3.1.1 Method 1: Cyclization of 3-Nitrogen-Functionalized Pyridine-4-carboxylic Acids with Nitrogen-Containing Compounds;342
1.10.3.1.3.2;16.19.5.3.2 By Formation of One N--C and One C--C Bond;342
1.10.3.1.3.2.1;16.19.5.3.2.1 Method 1: Suzuki Coupling/Condensation of 5-Bromopyrimidine-4-carboxylates with (2-Aminophenyl)boronic Acids;342
1.10.3.1.4;16.19.5.4 Pyrido[4,3-d]pyrimidines;343
1.10.3.1.4.1;16.19.5.4.1 By Formation of Two N--C Bonds and One C--C Bond;343
1.10.3.1.4.1.1;16.19.5.4.1.1 Method 1: Cyclization of 1-Benzylpiperidin-4-one, Nitriles, and Trifluoromethanesulfonic Anhydride;343
1.10.3.1.4.2;16.19.5.4.2 By Formation of Two N--C Bonds;344
1.10.3.1.4.2.1;16.19.5.4.2.1 Method 1: Cyclization of 4-(Arylethynyl)pyrimidine-5-carbaldehydes with tert-Butylamine;344
1.10.3.1.4.2.2;16.19.5.4.2.2 Method 2: Cycloamination of N-(3-Acetylpyridin-4-yl)formimidates with Primary Amines;345
1.10.4;16.21 Product Class 21: Pteridines and Related Structures;348
1.10.4.1;16.21.4 Pteridines and Related Structures;348
1.10.4.1.1;16.21.4.1 Synthesis by Ring-Closure Reactions;348
1.10.4.1.1.1;16.21.4.1.1 By Annulation to the Pyrimidine Ring;348
1.10.4.1.1.1.1;16.21.4.1.1.1 By Formation of Two N--C Bonds;348
1.10.4.1.1.1.1.1;16.21.4.1.1.1.1 Fragments N--C--C--N and C--C;348
1.10.4.1.1.1.1.1.1;16.21.4.1.1.1.1.1 Method 1: Synthesis from Pyrimidine-4,5-diamines and Diketones;348
1.10.4.1.1.1.1.1.2;16.21.4.1.1.1.1.2 Method 2: Synthesis from Pyrimidine-4,5-diamines and 1,2,3-Tricarbonyl Compounds;349
1.10.4.1.1.1.1.1.3;16.21.4.1.1.1.1.3 Method 3: Synthesis from Pyrimidine-4,5-diamines and Modified 1,2-Dicarbonyl Systems;349
1.10.4.1.1.1.1.1.4;16.21.4.1.1.1.1.4 Method 4: Synthesis from 5-Nitrosopyrimidin-4-amines and a,ß-Unsaturated Acyl Halides;351
1.10.4.1.1.1.1.2;16.21.4.1.1.1.2 Fragments N--C--C and N--C--C;352
1.10.4.1.1.1.1.2.1;16.21.4.1.1.1.2.1 Method 1: From 4-Chloro-5-nitropyrimidines and a-Aminocarbonyl Compounds (Polonovski–Boon Reaction);352
1.10.4.1.1.1.1.2.2;16.21.4.1.1.1.2.2 Method 2: From 4-Iodopyrimidin-5-amine and 1H-Pyrrole-2-carbaldehyde;353
1.10.4.1.1.2;16.21.4.1.2 By Annulation to the Pyrazine Ring;354
1.10.4.1.1.2.1;16.21.4.1.2.1 By Formation of Two N--C Bonds;354
1.10.4.1.1.2.1.1;16.21.4.1.2.1.1 Fragments N--C--C--C--N and C;354
1.10.4.1.1.2.1.1.1;16.21.4.1.2.1.1.1 Method 1: From 2,3-Disubstituted Pyrazines and One-Carbon Units;354
1.10.4.1.2;16.21.4.2 Synthesis by Ring Transformation;354
1.10.4.1.2.1;16.21.4.2.1 Method 1: Synthesis by Ring Contraction of Pyrimidoazepine Derivatives;354
1.10.4.1.3;16.21.4.3 Synthesis by Substituent Modification;355
1.10.4.1.3.1;16.21.4.3.1 Substitution of Existing Substituents;355
1.10.4.1.3.1.1;16.21.4.3.1.1 Substitution of Hydrogen;355
1.10.4.1.3.1.1.1;16.21.4.3.1.1.1 Method 1: N-Alkylation of Pteridinones or Their Derivatives;355
1.10.4.1.3.1.1.2;16.21.4.3.1.1.2 Method 2: Direct Introduction of Substituents by Nucleophilic Reactions;356
1.10.4.1.3.1.2;16.21.4.3.1.2 Substitution of Heteroatoms;358
1.10.4.1.3.1.2.1;16.21.4.3.1.2.1 Method 1: Substitution of Sulfur: Amination;358
1.10.4.1.3.1.2.2;16.21.4.3.1.2.3 Method 2: Substitution of Halogens: Alkylation;361
1.10.4.1.3.2;16.21.4.3.2 Modification of Substituents;362
1.10.4.1.3.2.1;16.21.4.3.2.1 Method 1: Hydrolysis;362
1.10.4.1.3.2.2;16.21.4.3.2.2 Method 2: Modification of Amine Substituents;362
1.10.4.1.3.2.3;16.21.4.3.2.3 Method 3: Oxidation of Alkylsulfanyl Substituents;363
1.10.4.1.3.3;16.21.4.3.3 Rearrangement of Substituents;363
1.10.4.1.3.3.1;16.21.4.3.3.1 Method 1: Rearrangement of Allyl Groups;363
1.10.5;16.22 Product Class 22: Other Diazinodiazines;366
1.10.5.1;16.22.6 Other Diazinodiazines;366
1.10.5.1.1;16.22.6.1 Pyridazinopyridazines;366
1.10.5.1.1.1;16.22.6.1.1 Addition Reactions;366
1.10.5.1.1.1.1;16.22.6.1.1.1 Method 1: Addition of Alkyl Groups;366
1.10.5.1.2;16.22.6.2 Pyrimidopyridazines;367
1.10.5.1.2.1;16.22.6.2.1 Synthesis by Ring-Closure Reactions;367
1.10.5.1.2.1.1;16.22.6.2.1.1 By Annulation to an Arene;367
1.10.5.1.2.1.1.1;16.22.6.2.1.1.1 By Formation of Two N--C Bonds;367
1.10.5.1.2.1.1.1.1;16.22.6.2.1.1.1.1 Method 1: From Substituted Pyridazines;367
1.10.5.1.2.1.1.1.2;16.22.6.2.1.1.1.2 Method 2: From Substituted Pyrimidines;368
1.10.5.1.2.1.1.2;16.22.6.2.1.1.2 By Formation of One N--C and One C--C Bond;371
1.10.5.1.2.1.1.2.1;16.22.6.2.1.1.2.1 Method 1: From 1,2-Dicarbonyl Compounds or a-Bromo Ketones;371
1.10.5.1.2.1.1.3;16.22.6.2.1.1.3 By Formation of One N--C Bond;372
1.10.5.1.2.1.1.3.1;16.22.6.2.1.1.3.1 Method 1: From 4,5-Disubstituted Pyrimidines;372
1.10.5.1.2.2;16.22.6.2.2 Synthesis by Substituent Modification;373
1.10.5.1.2.2.1;16.22.6.2.2.1 Substitution of Existing Substituents;373
1.10.5.1.2.2.1.1;16.22.6.2.2.1.1 Method 1: By Substitution of Chlorine;373
1.10.5.1.2.2.1.2;16.22.6.2.2.1.2 Method 2: By Substitution of Hydrogen;374
1.10.5.1.2.3;16.22.6.2.3 Addition Reactions;374
1.10.5.1.2.3.1;16.22.6.2.3.1 Method 1: Hydrogenation;374
1.10.5.1.3;16.22.6.3 Pyrimidopyrimidines;375
1.10.5.1.3.1;16.22.6.3.1 Synthesis by Ring-Closure Reactions;375
1.10.5.1.3.1.1;16.22.6.3.1.1 By Annulation to an Arene;375
1.10.5.1.3.1.1.1;16.22.6.3.1.1.1 By Formation of Two N--C Bonds;375
1.10.5.1.3.1.1.1.1;16.22.6.3.1.1.1.1 Method 1: From 2,4,5-Trisubstituted Pyrimidines;375
1.10.5.1.3.1.1.1.2;16.22.6.3.1.1.1.2 Method 2: From 4,5,6-Trisubstituted Pyrimidines;378
1.10.5.1.3.1.1.1.3;16.22.6.3.1.1.1.3 Method 3: From 2,4,5,6-Tetrasubstituted Pyrimidines;380
1.10.5.1.3.1.1.1.3.1;16.22.6.3.1.1.1.3.1 Variation 1: With a Guanidine or Thiourea;380
1.10.5.1.3.1.1.1.3.2;16.22.6.3.1.1.1.3.2 Variation 2: With a Thiouronium Chloride and an Amine;381
1.10.5.1.3.1.2;16.22.6.3.1.2 By Cycloaddition Reactions;382
1.10.5.1.3.1.2.1;16.22.6.3.1.2.1 By Formation of Two N--C Bonds;382
1.10.5.1.3.1.2.1.1;16.22.6.3.1.2.1.1 Method 1: By Diels–Alder Reaction;382
1.10.5.1.3.1.2.2;16.22.6.3.1.2.2 By Formation of One N--C and One C--C Bond;382
1.10.5.1.3.1.2.2.1;16.22.6.3.1.2.2.1 Method 1: By Diels–Alder Reaction;382
1.10.5.1.3.1.2.2.1.1;16.22.6.3.1.2.2.1.1 Variation 1: From Methyl 6-Methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate;382
1.10.5.1.3.1.2.2.1.2;16.22.6.3.1.2.2.1.2 Variation 2: From 6-Amino-1,3-dimethylpyrimidine-2,4(1H,3H)-diones;383
1.10.5.1.3.2;16.22.6.3.2 Synthesis By Ring Transformation;384
1.10.5.1.3.2.1;16.22.6.3.2.1 By Ring Enlargement;384
1.10.5.1.3.2.1.1;16.22.6.3.2.1.1 Method 1: From Purine Skeletons;384
1.10.5.1.3.3;16.22.6.3.3 Synthesis by Substituent Modification;386
1.10.5.1.3.3.1;16.22.6.3.3.1 Modification of Existing Substituents;386
1.10.5.1.3.3.1.1;16.22.6.3.3.1.1 Method 1: By Substitution of Chlorine;386
1.10.5.1.3.3.1.2;16.22.6.3.3.1.2 Method 2: By Substitution of Sulfur-Containing Groups;387
1.11;Volume 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles;390
1.11.1;17.2 Product Class 2: Six-Membered Hetarenes with Three Heteroatoms;390
1.11.1.1;17.2.1.9 1,2,3-Triazines and Phosphorus Analogues;390
1.11.1.1.1;17.2.1.9.1 Monocyclic 1,2,3-Triazines;390
1.11.1.1.1.1;17.2.1.9.1.1 Aromatization;390
1.11.1.1.1.1.1;17.2.1.9.1.1.1 Method 1: Dehydrogenation and Oxidation of 2,5-Dihydro-1,2,3-triazines;390
1.11.1.1.1.2;17.2.1.9.1.2 Synthesis by Substituent Modification;391
1.11.1.1.1.2.1;17.2.1.9.1.2.1 Addition Reactions;391
1.11.1.1.1.2.1.1;17.2.1.9.1.2.1.1 Method 1: Protonation of 1,2,3-Triazines by Tetrafluoroboric Acid;391
1.11.1.1.1.2.1.2;17.2.1.9.1.2.1.2 Method 2: N-Acylation, N-Alkylation, and N-Arylation;392
1.11.1.1.1.2.2;17.2.1.9.1.2.2 Modification of Substituents;394
1.11.1.1.1.2.2.1;17.2.1.9.1.2.2.1 Method 1: Dipolar Cycloaddition with Dicyano(1,2,3-triazin-2-ium-2-yl)methanides;394
1.11.1.1.1.2.2.2;17.2.1.9.1.2.2.2 Method 2: Dipolar Cycloaddition with 2-Ethyl-1,2,3-triazin-2-ium Salts;395
1.11.1.1.1.3;17.2.1.9.1.3 Applications of Monocyclic 1,2,3-Triazines in Organic Synthesis;395
1.11.1.1.1.3.1;17.2.1.9.1.3.1 Method 1: Synthesis of 2,5-Dihydro-1,2,3-triazines;395
1.11.1.1.2;17.2.1.9.2 Annulated 1,2,3-Triazines;397
1.11.1.1.2.1;17.2.1.9.2.1 Synthesis by Ring-Closure Reactions;397
1.11.1.1.2.1.1;17.2.1.9.2.1.1 By Annulation to a Heterocycle or Carbocycle;397
1.11.1.1.2.1.1.1;17.2.1.9.2.1.1.1 By Formation of Two N--N Bonds;397
1.11.1.1.2.1.1.1.1;17.2.1.9.2.1.1.1.1 Method 1: Reaction of a 2-(4,5-Dihydro-1H-imidazol-2-yl)thieno[2,3-b]pyridin-3-amine with Nitrous Acid;397
1.11.1.1.2.1.1.1.2;17.2.1.9.2.1.1.1.2 Method 2: Reaction of 2-Amino-1H-pyrrole-3,4-dicarboxamides with Nitrous Acid;398
1.11.1.1.2.1.1.1.3;17.2.1.9.2.1.1.1.3 Method 3: Reaction of Amino-Substituted Pyridine- and Pyridazinecarboxamides with Nitrous Acid;399
1.11.1.1.2.1.1.1.4;17.2.1.9.2.1.1.1.4 Method 4: Reaction of Amino-Substituted Hetarenecarbonitriles with Nitrous Acid and Hydrochloric Acid;400
1.11.1.1.2.1.1.1.5;17.2.1.9.2.1.1.1.5 Method 5: Diazotization of (Aminohetaryl)azoles;404
1.11.1.1.2.1.1.1.6;17.2.1.9.2.1.1.1.6 Method 6: Diazotization of 3,4-Diaminothieno[2,3-b]thiophene-2,5-dicarboxamide;405
1.11.1.1.2.1.1.2;17.2.1.9.2.1.1.2 By Formation of One N--C Bond;405
1.11.1.1.2.1.1.2.1;17.2.1.9.2.1.1.2.1 Method 1: Cyclization of 2-(Triaz-1-enyl)benzonitriles;405
1.11.1.1.2.1.2;17.2.1.9.2.1.2 By Annulation to the 1,2,3-Triazine Ring;406
1.11.1.1.2.1.2.1;17.2.1.9.2.1.2.1 By Formation of One C--C Bond;406
1.11.1.1.2.1.2.1.1;17.2.1.9.2.1.2.1.1 Method 1: Condensation Reactions of Annulated 4-Hydrazino-1,2,3-triazines;406
1.11.1.1.2.1.2.1.2;17.2.1.9.2.1.2.1.2 Method 2: Condensation Reactions of 4-Chloro-1,2,3-triazines;408
1.11.1.1.2.2;17.2.1.9.2.2 Synthesis by Substituent Modification;410
1.11.1.1.2.2.1;17.2.1.9.2.2.1 Substitution of Existing Substituents;410
1.11.1.1.2.2.1.1;17.2.1.9.2.2.1.1 Of Hydrogen;410
1.11.1.1.2.2.1.1.1;17.2.1.9.2.2.1.1.1 Method 1: N-Alkylation and N-Arylation;410
1.11.1.1.2.2.1.2;17.2.1.9.2.2.1.2 Of Heteroatoms;410
1.11.1.1.2.2.1.2.1;17.2.1.9.2.2.1.2.1 Method 1: Substitution of a 4-Chloro-Substitutent with Sulfur-Containing Groups;410
1.11.1.1.2.2.1.2.2;17.2.1.9.2.2.1.2.2 Method 2: Substitution of a 4-Chloro-Substitutent with Amino or Hydrazino Groups;411
1.11.1.1.2.2.1.2.3;17.2.1.9.2.2.1.2.3 Method 3: Substitution of a 4-Chloro-Substitutent with Sodium Azide;416
1.11.1.1.2.2.1.2.4;17.2.1.9.2.2.1.2.4 Method 4: Substitution of a 4-Hydroxy Group by a Halogen;416
1.11.1.1.2.2.1.2.5;17.2.1.9.2.2.1.2.5 Method 5: Substitution of Amino, 4-Hydrazino, and 4-(1H-1,2,4-Triazol-1-yl) Groups;417
1.11.1.1.2.2.2;17.2.1.9.2.2.2 Modification of Substituents;419
1.11.1.1.2.2.2.1;17.2.1.9.2.2.2.1 Method 1: Modification of Nitrogen Functionality;419
1.11.1.2;17.2.2.3 1,2,4-Triazines;424
1.11.1.2.1;17.2.2.3.1 Monocyclic 1,2,4-Triazines;424
1.11.1.2.1.1;17.2.2.3.1.1 Synthesis by Ring-Closure Reactions;424
1.11.1.2.1.1.1;17.2.2.3.1.1.1 By Formation of Three N--C Bonds;424
1.11.1.2.1.1.1.1;17.2.2.3.1.1.1.1 Fragments N--N--C, C--C, and N;424
1.11.1.2.1.1.1.1.1;17.2.2.3.1.1.1.1.1 Method 1: Microwave-Assisted Reaction of a-Diazo-ß-oxo Esters with Hydrazides;424
1.11.1.2.1.1.1.1.2;17.2.2.3.1.1.1.1.2 Method 2: Microwave-Assisted Condensation of 1,2-Dicarbonyl Compounds, Hydrazides, and Ammonium Acetate;425
1.11.1.2.1.1.1.1.3;17.2.2.3.1.1.1.1.3 Method 3: Zirconium-Catalyzed Condensation of Benzil with Hydrazides;426
1.11.1.2.1.1.1.2;17.2.2.3.1.1.1.2 Fragments N--N, C--C, C--N;427
1.11.1.2.1.1.1.2.1;17.2.2.3.1.1.1.2.1 Method 1: One-Pot Condensation of Amides, 1,2-Diketones, and Hydrazine;427
1.11.1.2.1.1.2;17.2.2.3.1.1.2 By Formation of Two N--C Bonds;430
1.11.1.2.1.1.2.1;17.2.2.3.1.1.2.1 Fragments N--N--C--N and C--C;430
1.11.1.2.1.1.2.1.1;17.2.2.3.1.1.2.1.1 Method 1: Reaction of 1,2-Dicarbonyl Compounds with Amidrazones;430
1.11.1.2.1.1.2.1.2;17.2.2.3.1.1.2.1.2 Method 2: Reaction of 1,2-Dicarbonyl Compounds with Semicarbazides, Thiosemicarbazides, or Selenosemicarbazides;432
1.11.1.2.1.1.2.1.3;17.2.2.3.1.1.2.1.3 Method 3: Cyclization of Hydrazonoimidazolidines with a-Oxo Esters;433
1.11.1.2.1.1.2.1.4;17.2.2.3.1.1.2.1.4 Method 4: Reaction of Aminoguanidines with a,a-Dihalo Ketones;434
1.11.1.2.1.1.2.1.5;17.2.2.3.1.1.2.1.5 Method 5: Condensation of Thiosemicarbazide with Dialkyl Acetylenedicarboxylates;436
1.11.1.2.1.1.2.1.6;17.2.2.3.1.1.2.1.6 Method 6: Reaction of a-Functionalized Acetonitriles with 1H-Tetrazol-5-amine;437
1.11.1.2.1.1.2.2;17.2.2.3.1.1.2.2 Fragments N--C--C--N--N and C;438
1.11.1.2.1.1.2.2.1;17.2.2.3.1.1.2.2.1 Method 1: Condensation of Aryl(hydrazono)acetaldehyde Oximes with Pyridine-2,6-dicarbaldehyde;438
1.11.1.2.1.1.2.2.2;17.2.2.3.1.1.2.2.2 Method 2: Condensation of Aryl(hydrazono)acetaldehyde Oximes with Pyridinecarbaldehydes;439
1.11.1.2.1.1.2.2.3;17.2.2.3.1.1.2.2.3 Method 3: Condensation of Aryl(hydrazono)acetaldehyde Oximes with Quinoline-2-carbaldehydes;440
1.11.1.2.1.1.3;17.2.2.3.1.1.3 By Formation of One N--C Bond;441
1.11.1.2.1.1.3.1;17.2.2.3.1.1.3.1 Fragment C--C--N--N--C--N;441
1.11.1.2.1.1.3.1.1;17.2.2.3.1.1.3.1.1 Method 1: Cyclization of Silyl-Substituted Thiosemicarbazone Acetic Acid Esters;441
1.11.1.2.1.1.3.2;17.2.2.3.1.1.3.2 Fragment C--N--C--C--N--N;442
1.11.1.2.1.1.3.2.1;17.2.2.3.1.1.3.2.1 Method 1: Cyclization of a,ß-Unsaturated a-Amido Hydrazides;442
1.11.1.2.1.2;17.2.2.3.1.2 Annulation by the Formation of a Second Heterocyclic Ring;443
1.11.1.2.1.2.1;17.2.2.3.1.2.1 Method 1: Cyclization of Hydrazides with 1,2,4-Triazin-3(2H)-ones;443
1.11.1.2.1.2.2;17.2.2.3.1.2.2 Method 2: Cyclization of 6-Benzyl-5-hydrazino-1,2,4-triazin-3(2H)-one with Amidinium Salts;444
1.11.1.2.1.2.3;17.2.2.3.1.2.3 Method 3: Sonagashira Coupling–Cyclization of 6-Chloro-1,2,4-triazine-3,5-diamines;445
1.11.1.2.1.2.4;17.2.2.3.1.2.4 Method 4: Cyclization of 6-Acetamido-1,2,4-triazine-5-carboxylates;446
1.11.1.2.1.2.5;17.2.2.3.1.2.5 Method 5: Cyclization of 3-Amino-1,2,4-triazin-5(4H)-ones with Glyoxal;447
1.11.1.2.1.2.6;17.2.2.3.1.2.6 Method 6: Cyclization of 5-Azido-2,3-dimethyl-2H-pyrazolo[4,3-e][1,2,4]triazine;448
1.11.1.2.1.2.7;17.2.2.3.1.2.7 Method 7: Cyclization of 5-[Hydrazono(3,4,5-trimethoxyphenyl)methyl]-1,2,4-triazin-6(1H)-ones;449
1.11.1.2.1.3;17.2.2.3.1.3 Aromatization;450
1.11.1.2.1.3.1;17.2.2.3.1.3.1 Method 1: Dehydration of Dihydrotriazines;450
1.11.1.2.1.3.2;17.2.2.3.1.3.2 Method 2: N-Deacylation and Oxidation of Tetrahydro-1,2,4-triazine;450
1.11.1.2.1.4;17.2.2.3.1.4 Synthesis by Substituent Modification;451
1.11.1.2.1.4.1;17.2.2.3.1.4.1 Substitution of Existing Substituents;451
1.11.1.2.1.4.1.1;17.2.2.3.1.4.1.1 Of Hydrogen;451
1.11.1.2.1.4.1.1.1;17.2.2.3.1.4.1.1.1 Method 1: Reaction of 1,2,4-Triazine 4-Oxides with Terminal Alkynes;451
1.11.1.2.1.4.1.2;17.2.2.3.1.4.1.2 Of Carbon Functionalities;452
1.11.1.2.1.4.1.2.1;17.2.2.3.1.4.1.2.1 Method 1: Reaction of 1,2,4-Triazine-5-carbonitriles with Nucleophiles;452
1.11.1.2.1.4.1.3;17.2.2.3.1.4.1.3 Of Heteroatoms;453
1.11.1.2.1.4.1.3.1;17.2.2.3.1.4.1.3.1 Method 1: Reaction of Chloro-Substituted 1,2,4-Triazines with Amines;453
1.11.1.2.1.4.1.3.2;17.2.2.3.1.4.1.3.2 Method 2: Reaction of Methylsulfonyl-Substituted 1,2,4-Triazines with Alkynyllithium Reagents;454
1.11.1.2.1.4.1.3.3;17.2.2.3.1.4.1.3.3 Method 3: Reaction of Methylsulfanyl-Substituted 1,2,4-Triazines with Amines;455
1.11.1.2.1.4.1.3.4;17.2.2.3.1.4.1.3.4 Method 4: Deamination with Preyssler's Anion;457
1.11.1.2.1.4.2;17.2.2.3.1.4.2 Addition Reactions;458
1.11.1.2.1.4.2.1;17.2.2.3.1.4.2.1 Method 1: Nucleophilic Addition of Cyanide to 1,2,4-Triazine 4-Oxides;458
1.11.1.2.1.4.2.2;17.2.2.3.1.4.2.2 Method 2: Nucleophilic Addition of Indoles to 1,2,4-Triazine 4-Oxides;459
1.11.1.2.1.4.2.3;17.2.2.3.1.4.2.3 Method 3: Nucleophilic Addition of Carboranes to 1,2,4-Triazine 4-Oxides;460
1.11.1.2.1.4.3;17.2.2.3.1.4.3 Modification of Substituents;461
1.11.1.2.1.4.3.1;17.2.2.3.1.4.3.1 Method 1: Methylation of 3-Thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-ones;461
1.11.1.2.1.4.3.2;17.2.2.3.1.4.3.2 Method 2: N-Acylation of Ethyl 6-Amino-1,2,4-triazine-5-carboxylate;461
1.11.1.2.1.4.3.3;17.2.2.3.1.4.3.3 Method 3: Displacement of an a-Hydroxy Group with a Halide;462
1.11.1.2.1.4.3.4;17.2.2.3.1.4.3.4 Method 4: a-Halogen Exchange;462
1.11.1.2.1.4.3.5;17.2.2.3.1.4.3.5 Method 5: Displacement of an a-Fluoride with Amines;463
1.11.1.2.1.4.3.6;17.2.2.3.1.4.3.6 Method 6: Displacement of an a-Chloride with Thiols;463
1.11.1.2.1.4.3.7;17.2.2.3.1.4.3.7 Method 7: Displacement of an a-Chloride with Amines;464
1.11.1.2.1.4.3.8;17.2.2.3.1.4.3.8 Method 8: Displacement of an a-Chloride by Wittig Reaction;465
1.11.1.2.1.4.3.9;17.2.2.3.1.4.3.9 Method 9: Ring Cleavage of Tetrazolo[1,5-b][1,2,4]triazin-7-amines;467
1.11.1.2.1.4.3.10;17.2.2.3.1.4.3.10 Method 10: Palladium-Catalyzed Arylation of 1,2,4-Triazin-3-amine;468
1.11.1.2.2;17.2.2.3.2 1,2,4-Benzotriazines and Related Compounds;469
1.11.1.2.2.1;17.2.2.3.2.1 Synthesis by Ring-Closure Reactions;469
1.11.1.2.2.1.1;17.2.2.3.2.1.1 By Formation of One N--N and One N--C Bond;469
1.11.1.2.2.1.1.1;17.2.2.3.2.1.1.1 Fragments N--C--C--N and N--C;469
1.11.1.2.2.1.1.1.1;17.2.2.3.2.1.1.1.1 Method 1: Reaction of 2-Nitroanilines with Cyanamide;469
1.11.1.2.2.1.1.2;17.2.2.3.2.1.1.2 Fragments N--C--N and N--C--C;470
1.11.1.2.2.1.1.2.1;17.2.2.3.2.1.1.2.1 Method 1: Reaction of 1-Halo-2-nitrobenzenes with Guanidine Hydrochloride;470
1.11.1.2.2.2;17.2.2.3.2.2 Synthesis by Ring Transformation;470
1.11.1.2.2.2.1;17.2.2.3.2.2.1 Method 1: Isomerization of Angular Triazinium Salts;470
1.11.1.2.2.3;17.2.2.3.2.3 Synthesis by Substituent Modification;471
1.11.1.2.2.3.1;17.2.2.3.2.3.1 Addition Reactions;471
1.11.1.2.2.3.1.1;17.2.2.3.2.3.1.1 Method 1: Oxidation of 1,2,4-Benzotriazin-3-amine 1-Oxides;471
1.11.1.3;17.2.3.6 1,3,5-Triazines and Phosphorus Analogues;474
1.11.1.3.1;17.2.3.6.1 1,3,5-Triazines;474
1.11.1.3.1.1;17.2.3.6.1.1 Synthesis by Ring-Closure Reactions;474
1.11.1.3.1.1.1;17.2.3.6.1.1.1 By Formation of Three N--C Bonds;474
1.11.1.3.1.1.1.1;17.2.3.6.1.1.1.1 Fragments N--C, N--C, and N--C;474
1.11.1.3.1.1.1.1.1;17.2.3.6.1.1.1.1.1 Method 1: Trimerization of Dialkylcyanamides or Nitriles;474
1.11.1.3.1.1.1.1.2;17.2.3.6.1.1.1.1.2 Method 2: Trimerization of Imidates;475
1.11.1.3.1.1.1.1.3;17.2.3.6.1.1.1.1.3 Method 3: Reaction of Carbodiimides with Nitrilium Salts;476
1.11.1.3.1.1.2;17.2.3.6.1.1.2 By Formation of Two N--C Bonds;477
1.11.1.3.1.1.2.1;17.2.3.6.1.1.2.1 Fragments N--C--N--C and N--C;477
1.11.1.3.1.1.2.1.1;17.2.3.6.1.1.2.1.1 Method 1: Reaction of Guanidine-1-carbonitrile with Nitriles;477
1.11.1.3.1.1.2.2;17.2.3.6.1.1.2.2 Fragments N--C--N and C--N--C;479
1.11.1.3.1.1.2.2.1;17.2.3.6.1.1.2.2.1 Method 1: Reaction of Isothiocyanates with Amidines or Guanidines;479
1.11.1.3.1.1.2.2.2;17.2.3.6.1.1.2.2.2 Method 2: Reaction of Isothiocyanates with Sodium Hydrogen Cyanamide;480
1.11.1.3.1.1.2.2.3;17.2.3.6.1.1.2.2.3 Method 3: Reaction of N-Functionalized Imidoyl Chlorides with Amidine Derivatives;481
1.11.1.3.1.1.2.2.4;17.2.3.6.1.1.2.2.4 Method 4: Reaction of N-(2,2-Dichlorovinyl)benzamides with Amidines;484
1.11.1.3.1.1.2.2.5;17.2.3.6.1.1.2.2.5 Method 5: Reaction of 4-Oxo-1,3-benzoxazinium Perchlorates with Guanidines;485
1.11.1.3.1.1.2.2.6;17.2.3.6.1.1.2.2.6 Method 6: Reaction of Amidinium Salts with Pyrazolamines or 1,2,4-Triazolamines;486
1.11.1.3.1.1.2.3;17.2.3.6.1.1.2.3 Fragments N--C--N--C--N and C;487
1.11.1.3.1.1.2.3.1;17.2.3.6.1.1.2.3.1 Method 1: Reaction of Biguanides with Carboxylic Acid Derivatives;487
1.11.1.3.1.1.2.3.2;17.2.3.6.1.1.2.3.2 Method 2: Reaction of Zinc(II) Bis[bis(methoxyimido)amide] with Carboxylic Acid Derivatives;490
1.11.1.3.1.2;17.2.3.6.1.2 Synthesis by Substituent Modification;491
1.11.1.3.1.2.1;17.2.3.6.1.2.1 Substitution of Existing Substituents;491
1.11.1.3.1.2.1.1;17.2.3.6.1.2.1.1 Of Hydrogen;491
1.11.1.3.1.2.1.1.1;17.2.3.6.1.2.1.1.1 Method 1: Amination;491
1.11.1.3.1.2.1.2;17.2.3.6.1.2.1.2 Of Carbon Functionalities;492
1.11.1.3.1.2.1.2.1;17.2.3.6.1.2.1.2.1 Method 1: Substitution of Trinitromethyl Groups;492
1.11.1.3.1.2.1.2.2;17.2.3.6.1.2.1.2.2 Method 2: Substitution of Cyano Groups;493
1.11.1.3.1.2.1.2.3;17.2.3.6.1.2.1.2.3 Method 3: Substitution of Bis(tert-Butoxycarbonyl)(nitro)methyl Groups;495
1.11.1.3.1.2.1.3;17.2.3.6.1.2.1.3 Of Halogens by Carbon Functionalities;495
1.11.1.3.1.2.1.3.1;17.2.3.6.1.2.1.3.1 Method 1: Reaction with Grignard Reagents;495
1.11.1.3.1.2.1.3.2;17.2.3.6.1.2.1.3.2 Method 2: Reaction with Boronic Acids (Suzuki Coupling);498
1.11.1.3.1.2.1.3.3;17.2.3.6.1.2.1.3.3 Method 3: Reaction with Organotin Reagents;499
1.11.1.3.1.2.1.3.4;17.2.3.6.1.2.1.3.4 Method 4: Reaction with Arynes;500
1.11.1.3.1.2.1.3.5;17.2.3.6.1.2.1.3.5 Method 5: Reaction with Arylzinc Chlorides (Negishi Coupling);502
1.11.1.3.1.2.1.3.6;17.2.3.6.1.2.1.3.6 Method 6: Nickel-Catalyzed Ullmann Homocoupling Reactions;502
1.11.1.3.1.2.1.3.7;17.2.3.6.1.2.1.3.7 Method 7: Cobalt-Catalyzed Arylation or Benzylation Reactions;503
1.11.1.3.1.2.1.3.8;17.2.3.6.1.2.1.3.8 Method 8: Sonagashira Reactions;505
1.11.1.3.1.2.1.3.9;17.2.3.6.1.2.1.3.9 Method 9: Cross-Coupling Reactions with Organoaluminum Compounds;505
1.11.1.3.1.2.1.4;17.2.3.6.1.2.1.4 Of Halogens by Oxygen Functionalities;506
1.11.1.3.1.2.1.4.1;17.2.3.6.1.2.1.4.1 Method 1: Exchange of Chlorine in 2,4,6-Trichloro-1,3,5-triazine;506
1.11.1.3.1.2.1.4.2;17.2.3.6.1.2.1.4.2 Method 2: Exchange of Chlorine in Chloro-Substituted 1,3,5-Triazines;509
1.11.1.3.1.2.1.5;17.2.3.6.1.2.1.5 Of Halogens by Sulfur Functionalities;509
1.11.1.3.1.2.1.5.1;17.2.3.6.1.2.1.5.1 Method 1: Exchange of Chlorine for an Alkylsulfanyl Group;509
1.11.1.3.1.2.1.5.2;17.2.3.6.1.2.1.5.2 Method 2: Exchange of Chlorine for an Arylsulfanyl Group;509
1.11.1.3.1.2.1.6;17.2.3.6.1.2.1.6 Substitution of Halogens by Selenium or Tellurium Functionalities;510
1.11.1.3.1.2.1.6.1;17.2.3.6.1.2.1.6.1 Method 1: Exchange of Chlorine with Chalcogenide Nucleophiles;510
1.11.1.3.1.2.1.7;17.2.3.6.1.2.1.7 Of Halogens by Nitrogen Functionalities;510
1.11.1.3.1.2.1.7.1;17.2.3.6.1.2.1.7.1 Method 1: Reaction of 2,4,6-Trichloro-1,3,5-triazine with Amines (Monosubstitution);510
1.11.1.3.1.2.1.7.2;17.2.3.6.1.2.1.7.2 Method 2: Reaction of 2,4,6-Trichloro-1,3,5-triazine with Amines (Trisubstitution);511
1.11.1.3.1.2.1.7.3;17.2.3.6.1.2.1.7.3 Method 3: Reaction of 2,4-Dichloro-1,3,5-triazines with Amines;513
1.11.1.3.1.2.1.7.4;17.2.3.6.1.2.1.7.4 Method 4: Reaction of 2-Chloro-1,3,5-triazines with Amines;514
1.11.1.3.1.2.1.7.5;17.2.3.6.1.2.1.7.5 Method 5: Reaction of 2-Chloro-1,3,5-triazines with Ureas or Thioureas;515
1.11.1.3.1.2.1.8;17.2.3.6.1.2.1.8 Generation of 1,3,5-Triazine Libraries by Substitution of Chlorine by Oxygen or Nitrogen Functionalities;517
1.11.1.3.1.2.1.8.1;17.2.3.6.1.2.1.8.1 Method 1: Parallel Synthesis on Solid Supports;517
1.11.1.3.1.2.1.9;17.2.3.6.1.2.1.9 Of Sulfur Functionalities;518
1.11.1.3.1.2.1.9.1;17.2.3.6.1.2.1.9.1 Method 1: Substitution of Sulfonyl Groups;518
1.11.1.3.1.2.1.9.2;17.2.3.6.1.2.1.9.2 Method 2: Cross Coupling of Sulfanyl-Substituted 1,3,5-Triazines with Functionalized Organozinc Reagents;518
1.11.1.3.1.2.1.9.3;17.2.3.6.1.2.1.9.3 Method 3: Reductive Rearrangement of 2-(Triazinylsulfanyl)benzamides;519
1.11.1.3.1.2.2;17.2.3.6.1.2.2 Rearrangement of Substituents;520
1.11.1.3.1.2.2.1;17.2.3.6.1.2.2.1 Method 1: Smiles Rearrangement;520
1.11.1.3.1.2.2.2;17.2.3.6.1.2.2.2 Method 2: Thermal Isomerization of 2,4,6-Trialkoxy-1,3,5-triazines;521
1.11.1.3.1.2.3;17.2.3.6.1.2.3 Modification of Substituents;521
1.11.1.3.1.2.3.1;17.2.3.6.1.2.3.1 Method 1: S-Oxidation;521
1.11.1.3.1.2.3.2;17.2.3.6.1.2.3.2 Method 2: Modification at the a-Carbon;521
1.11.1.3.1.2.3.2.1;17.2.3.6.1.2.3.2.1 Variation 1: Conversion of Trinitromethyl Groups into Nitriles;521
1.11.1.3.1.2.3.2.2;17.2.3.6.1.2.3.2.2 Variation 2: Conversion of Trinitromethyl Groups into Nitrile Oxides and Subsequent Heterocycle Formation;522
1.11.1.3.1.2.3.2.3;17.2.3.6.1.2.3.2.3 Variation 3: Conversion of Dinitromethyl Groups into Oxadiazole 2-Oxides;525
1.11.1.3.1.2.3.2.4;17.2.3.6.1.2.3.2.4 Variation 4: Conversion of Alkynyltriazines into Triazoles Using Click Chemistry;525
1.11.1.3.1.2.3.3;17.2.3.6.1.2.3.3 Method 3: Reaction of Nitrogen Substituents;526
1.11.1.3.1.2.3.3.1;17.2.3.6.1.2.3.3.1 Variation 1: N-Heterocycle Formation;526
1.11.1.3.1.2.3.3.2;17.2.3.6.1.2.3.3.2 Variation 2: N-Alkylation;527
1.11.1.3.1.2.3.3.3;17.2.3.6.1.2.3.3.3 Variation 3: Debenzylation;528
1.11.1.3.1.2.3.3.4;17.2.3.6.1.2.3.3.4 Variation 4: Thiourea and Thiazole Formation;528
1.12;Volume 34: Fluorine;532
1.12.1;34.1 Product Class 1: Fluoroalkanes;532
1.12.1.1;34.1.1.7 Synthesis by Substitution of Hydrogen;532
1.12.1.1.1;34.1.1.7.1 Method 1: Direct Fluorination with Elemental Fluorine;533
1.12.1.1.2;34.1.1.7.2 Method 2: Reaction with Selectfluor;535
1.13;Author Index;540
1.14;Abbreviations;560
1.15;List of All Volumes;566


Abstracts
4.4.25.11 Acylsilanes
M. Nahm Garrett and J. S. Johnson This chapter is an update to the previous Science of Synthesis contribution on the synthesis and applications of acylsilanes. It covers syntheses and applications reported since 2000. Synthetic methods described herein are divided according to five target product subtypes: simple acylsilanes, bis(acylsilanes), a-oxo acylsilanes, a,ß-unsaturated acylsilanes, and a-amino acylsilanes. The largest of those sections, simple acylsilanes, is further divided according to the main strategies used for their synthesis: hydrolysis of acetals, oxidation of organocuprates, and acyl substitution of carboxylic amides. The major applications of the various types of acylsilanes are also described. Keywords: acylsilanes · dithianes · hydrolysis · cuprates · oxidation · amides · substitution · bis(acylsilanes) · nucleophilic addition · Brook rearrangement · acyl anion equivalent 8.1.34 Asymmetric Lithiation
J.-C. Kizirian This section deals with processes that produce a chiral lithiated species by an asymmetric lithiation. The lithium atom can be introduced on an sp3 carbon atom (centered chirality) or an sp2 carbon atom (axial or planar chirality). The C—Li bond can be formed by one of three main methods: deprotonation (of a C—H bond), transmetalation (usually from tin), or reductive lithiation (from halo, cyano, arylsulfanyl, arylselanyl, or aryltellanyl derivatives). The configurational stability of the lithiated species determines the stereochemical pathway of the reaction, but is not a necessary condition to have a selective process. The product is formed by one of the following mechanisms: enantioselective deprotonation, dynamic thermodynamic resolution, or dynamic kinetic resolution. Furthermore, the electrophilic substitution step can take place with inversion or retention of configuration. Keywords: lithium compounds · dynamic thermodynamic resolution · dynamic kinetic resolution · enantioselective deprotonation · diastereoselective deprotonation · Wittig rearrangement · tin–lithium exchange · reductive lithiation · carbolithiation 13.32 Product Class 32: 1,2,3-Trithioles, Their Benzo Derivatives, and Selenium and Tellurium Analogues
R. A. Aitken This chapter covers methods for the synthesis of 1,2,3-trithioles, 1,2,3-benzotrithioles, and a range of eleven different analogues with one or more sulfur atoms replaced by selenium or tellurium. None of these ring systems has previously been included in Science of Synthesis. Keywords: sulfur heterocycles · selenium compounds · tellurium compounds · trithioles · dithiatelluroles · benzotrithioles · benzodithiaselenoles · benzothiadiselenoles · benzotriselenoles · benzodithiatelluroles · benzothiaselenatelluroles · benzodiselenatelluroles 13.33 Product Class 33: 1,2,4-Triazolium Salts
C. A. Gondo and J. W. Bode A 1,2,4-triazolium salt is composed of a cationic five-membered ring associated with a negatively charged counterion. These compounds are stable precursors for N-heterocyclic carbenes (NHCs), which are used either as ligands for metal-based catalysts or as organic catalysts. In this survey, the major routes for the synthesis of 1,2,4-triazolium salts are reviewed. Keywords: heterocycle · N-heterocyclic carbene · ligand · organocatalyst · ring-closure reactions · ring transformation · substituent modification · 1,2,4-triazolium salts 13.34 Product Class 34: Dithiadiazolium Salts and Dithiadiazolyl-Containing Compounds
R. J. Pearson This chapter describes the preparation of 1,2,3,5-dithiadiazolium salts and their corresponding radicals and dimers. These crystalline and brightly colored compounds are most commonly synthesized, in varying yields, by ring-closure reactions involving amidines, amidoximes, nitriles, azines, and alkenes. The synthetic routes to the less stable 1,3,2,4-isomers are also discussed, together with the conditions for their complete isomerism to the dominant 1,2,3,5-isomers. Keywords: dithiadiazole · radical · dimerization · isomerism · ring closure · ring transformation 16.4.6 1,4-Dithiins
S. A. Kosarev This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of monocyclic 1,4-dithiins and their annulated analogues. It focuses on the literature published in the period 2003–2011. Keywords: alkynes · chromium catalysts · dihalides · diimides · diketones · 1,4-dithiins · diols · dithianes · dithiols · sulfides · sulfinates · sulfur compounds · sulfur heterocycles · thiadiazoles · thiolates · thiophenes 16.18.7 Pyridopyridazines
S. Lou and J. Zhang This update presents the state of the art in the synthesis of pyridopyridazine heterocyclic systems from 2001 to 2011. The synthetic methodologies are grouped based on the isomeric pyridopyridazine structures and typical experimental procedures are included. Some pyridopyridazine derivatives have been used as drug candidates and brief discussions are given of their pharmaceutical activities in the treatment of cancers, allergies, pain states, inflammatory diseases, and erectile dysfunction. Keywords: pyridopyridazine · heterocycles · pyridine · pyridazine · pyridopyridazinone · hydrazine · dicarbonyl 16.19.5 Pyridopyrimidines
Y.-J. Wu This chapter in an update to the previous Science of Synthesis contribution describing the the synthesis of all four isomeric pyridopyrimidines and their saturated derivatives. It covers syntheses described from 2002 until 2011. Keywords: pyrido[2,3-d]pyrimidine · pyrido[3,2-d]pyrimidine · pyrido[3,4-d]pyrimidine · pyrido[4,3-d]pyrimidine 16.21.4 Pteridines and Related Structures
T. Ishikawa This review is an update to the earlier Science of Synthesis contribution describing the synthesis of pteridines and pteridinones. It focuses on syntheses described since 2003. Keywords: pteridine · pteridinone · ring closure · ring transformation · substituent modification 16.22.6 Other Diazinodiazines
T. Ishikawa This review is an update to the earlier Science of Synthesis contribution describing the synthesis of diazinodiazines other than pteridines. It focuses on syntheses described since 2003. Keywords: diazinodiazine · pyridazinopyridazine · pyrimidopyridazine · pyrimidopyrimidine · addition · ring closure · substituent modification 17.2.1.9 1,2,3-Triazines and Phosphorus Analogues
P. Aggarwal and M. W. P. Bebbington This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of 1,2,3-triazines. The reported diazotization method is of particular note, as the substrate scope has broadened in recent years. Keywords: alkylation · arylation · condensation reactions · cyclization · diazotization · dipolar cycloaddition · nucleophilic aromatic substitution · nucleophilic addition · ring-closure reactions · triazines 17.2.2.3 1,2,4-Triazines
P. Aggarwal and M. W. P. Bebbington This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of 1,2,4-triazines. Of particular note are the microwave-assisted reactions that have emerged in recent years in addition to more conventional methods. Keywords: condensation reactions · cyclization · dehydration · diazo compounds · microwave-assisted reactions · multicomponent reactions · nucleophilic addition · ring closure · ring formation · 1,2,4-triazines 17.2.3.6 1,3,5-Triazines and Phosphorus Analogues
P. Aggarwal and M. W. P. Bebbington This manuscript is an update to the earlier Science of Synthesis edition describing methods for the synthesis of 1,3,5-triazines. A number of transition-metal-catalyzed techniques have emerged in recent years to complement traditional methods. Keywords: condensation reactions · cross-coupling reactions · multicomponent reactions · nucleophilic aromatic substitution · ring closure · ring formation · transition metals · 1,3,5-triazines 34.1.1.7 Synthesis by Substitution of Hydrogen
G. Sandford Recent methods for the selective fluorination of sp3-hybridized...


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.