Ahmed | Physics and Engineering of Radiation Detection | E-Book | sack.de
E-Book

E-Book, Englisch, 784 Seiten

Ahmed Physics and Engineering of Radiation Detection


2. Auflage 2014
ISBN: 978-0-12-801644-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 784 Seiten

ISBN: 978-0-12-801644-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Physics and Engineering of Radiation Detection presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. The second edition is fully revised and provides the latest developments in detector technology and analyses software. Also, more material related to measurements in particle physics and a complete solutions manual have been added. - Discusses the experimental techniques and instrumentation used in different detection systems in a very practical way without sacrificing the physics content - Provides useful formulae and explains methodologies to solve problems related to radiation measurements - Contains many worked-out examples and end-of-chapter problems - Detailed discussions on different detection media, such as gases, liquids, liquefied gases, semiconductors, and scintillators - Chapters on statistics, data analysis techniques, software for data analysis, and data acquisition systems

Dr. Ahmed has several years of extensive practical experience in the field of radiation detection and measurement. He holds degrees of Masters in Physics, Masters in Nuclear Engineering, and PhD in Physics. He has heavily contributed to research and development in some of the world renowned Physics laboratories, such as Max-Planck-Institute for Physics in Germany, Fermi National Accelerator Laboratory in USA, and Sudbury Neutrino Observatory in Canada. Particle/radiation detection and measurement are his primary areas of expertise. Currently he is working at Laurentian University/Penguin ASI Inc. as a Senior Research Scientist. Apart from research and development, Dr. Ahmed also teaches in the Physics department of Laurentian University. Dr. Ahmed is a Chartered Scientist and a Chartered Physicist of the Institute of Physics, UK. He holds memberships of the Institute of Physics, UK, the Canadian Association of Physicists, and the Institute of Particle Physics, Canada.

Ahmed Physics and Engineering of Radiation Detection jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Physics and Engineering of Radiation Detection;4
3;Copyright Page;5
4;Dedication;6
5;Contents;8
6;Preface to the second edition;16
7;Preface to the first edition;18
8;1 Properties and sources of radiation;22
8.1;1.1 Types of radiation;22
8.2;1.2 Waves or particles?;23
8.3;1.3 Radioactivity and radioactive decay;25
8.3.1;1.3.A Decay energy or Q-value;30
8.3.2;1.3.B The decay equation;33
8.3.3;1.3.C Composite radionuclides;38
8.3.4;1.3.D Radioactive chain;41
8.3.5;1.3.E Decay equilibrium;45
8.3.5.1;E.1 Secular equilibrium;46
8.3.5.2;E.2 Transient equilibrium;48
8.3.5.3;E.3 No equilibrium;48
8.3.6;1.3.F Branching ratio;49
8.3.7;1.3.G Units of radioactivity;50
8.4;1.4 Activation;50
8.5;1.5 Sources of radiation;51
8.5.1;1.5.A Natural sources;52
8.5.1.1;A.1 Cosmic radiation sources;52
8.5.1.2;A.2 Terrestrial radiation sources;53
8.5.1.3;A.3 Internal radiation sources;53
8.5.2;1.5.B Man-made sources;53
8.6;1.6 General properties and sources of particles and waves;55
8.6.1;1.6.A Photons;55
8.6.1.1;A.1 Sources of photons;57
8.6.1.1.1;X-ray machine;57
8.6.1.1.2;Synchrotron radiation;60
8.6.1.1.3;Laser;60
8.6.1.1.3.1;Gas lasers;61
8.6.1.1.3.2;Liquid lasers;62
8.6.1.1.3.3;Solid-state lasers;62
8.6.1.1.3.4;New developments;62
8.6.1.1.4;Radioactive sources of photons;63
8.6.2;1.6.B Electrons;65
8.6.2.1;B.1 Sources of electrons;66
8.6.2.1.1;Electron gun;66
8.6.2.1.2;Radioactive sources of electrons;68
8.6.3;1.6.C Positrons;69
8.6.3.1;C.1 Sources of positrons;69
8.6.3.1.1;Particle accelerators;69
8.6.3.1.2;Radioactive sources of positrons;70
8.6.4;1.6.D Protons;70
8.6.4.1;D.1 Sources of protons;71
8.6.4.1.1;Particle accelerators;71
8.6.4.1.2;Laser ion accelerators;71
8.6.4.1.3;Radioactive sources of protons;72
8.6.5;1.6.E Neutrons;72
8.6.5.1;E.1 Sources of neutrons;73
8.6.5.1.1;Spallation sources;73
8.6.5.1.2;Composite sources;74
8.6.5.1.3;Fusion sources;75
8.6.5.1.4;Nuclear reactors;75
8.6.5.1.5;Radioactive sources of neutrons;75
8.6.6;1.6.F Alpha particles;76
8.6.6.1;F.1 Sources of a-particles;77
8.6.6.1.1;Accelerator-based sources;77
8.6.6.1.2;Radioactive sources of a-particles;78
8.6.7;1.6.G Fission fragments;78
8.6.8;1.6.H Muons, neutrinos, and other particles;79
8.6.8.1;H.1 Muons;79
8.6.8.2;H.2 Neutrinos;80
8.6.8.3;H.3 Some other particles;81
8.7;Problems;81
8.8;Bibliography;82
9;2 Interaction of radiation with matter;86
9.1;2.1 Some basic concepts and terminologies;86
9.1.1;2.1.A Inverse square law;87
9.1.2;2.1.B Cross section;88
9.1.3;2.1.C Mean free path;90
9.1.4;2.1.D Radiation length;92
9.1.5;2.1.E Conservation laws;97
9.1.5.1;E.1 Conservation of energy;97
9.1.5.2;E.2 Conservation of momentum;98
9.1.5.3;E.3 Conservation of electrical charge;98
9.2;2.2 Types of particle interactions;99
9.2.1;2.2.A Elastic scattering;99
9.2.2;2.2.B Inelastic scattering;100
9.2.3;2.2.C Annihilation;100
9.2.4;2.2.D Bremsstrahlung;102
9.2.5;2.2.E Cherenkov radiation;104
9.3;2.3 Interaction of photons with matter;106
9.3.1;2.3.A Interaction mechanisms;106
9.3.1.1;A.1 Photoelectric effect;106
9.3.1.2;A.2 Compton scattering;111
9.3.1.3;A.3 Thompson scattering;119
9.3.1.4;A.4 Rayleigh scattering;119
9.3.1.5;A.5 Pair production;119
9.3.2;2.3.B Passage of photons through matter;123
9.3.2.1;B.1 Measuring attenuation coefficient;127
9.3.2.2;B.2 Mixtures and compounds;128
9.3.2.3;B.3 Stacked materials;130
9.4;2.4 Interaction of heavy charged particles with matter;132
9.4.1;2.4.A Rutherford scattering;132
9.4.2;2.4.B Passage of charged particles through matter;137
9.4.3;2.4.C Bragg curve;144
9.4.4;2.4.D Energy straggling;145
9.4.5;2.4.E Range and range straggling;147
9.4.5.1;E.1 Range of a-particles;147
9.4.5.2;E.2 Range of protons;149
9.5;2.5 Interaction of electrons with matter;150
9.5.1;2.5.A Interaction modes;151
9.5.1.1;A.1 Ionization;151
9.5.1.2;A.2 Møller scattering;152
9.5.1.3;A.3 Bhabha scattering;152
9.5.1.4;A.4 Electron–positron annihilation;152
9.5.1.5;A.5 Bremsstrahlung;153
9.5.1.6;A.6 Cherenkov radiation;154
9.5.2;2.5.B Passage of electrons through matter;156
9.5.3;2.5.C Energy straggling;160
9.5.4;2.5.D Range of electrons;162
9.6;2.6 Interaction of neutral particles with matter;167
9.6.1;2.6.A Neutrons;167
9.6.1.1;A.1 Elastic scattering;167
9.6.1.2;A.2 Inelastic scattering;167
9.6.1.3;A.3 Transmutation;168
9.6.1.4;A.4 Radiative capture;168
9.6.1.5;A.5 Spallation;169
9.6.1.6;A.6 Fission;169
9.6.1.7;A.7 Total cross section;169
9.6.1.8;A.8 Passage of neutrons through matter;170
9.7;Problems;172
9.8;Bibliography;174
10;3 Gas-filled detectors;178
10.1;3.1 Production of electron–ion pairs;178
10.2;3.2 Diffusion and drift of charges in gases;181
10.2.1;3.2.A Diffusion in the absence of electric field;181
10.2.1.1;A.1 Diffusion in the presence of electric field;182
10.2.2;3.2.B Drift of charges in electric field;183
10.2.2.1;B.1 Drift of ions;183
10.2.2.2;B.2 Drift of electrons;184
10.2.3;3.2.C Effects of impurities on charge transport;187
10.3;3.3 Regions of operation of gas-filled detectors;190
10.3.1;3.3.A Recombination region;190
10.3.2;3.3.B Ion chamber region;191
10.3.3;3.3.C Proportional region;192
10.3.3.1;C.1 Avalanche multiplication;192
10.3.4;3.3.D Region of limited proportionality;195
10.3.5;3.3.E Geiger–Mueller region;195
10.3.5.1;E.1 Breakdown;196
10.3.6;3.3.F Continuous discharge;199
10.4;3.4 Ionization chambers;200
10.4.1;3.4.A Current–voltage characteristics;200
10.4.2;3.4.B Mechanical design;200
10.4.2.1;B.1 Parallel plate geometry;201
10.4.2.2;B.2 Cylindrical geometry;204
10.4.3;3.4.C Choice of gas;208
10.4.4;3.4.D Special types of ion chambers;208
10.4.4.1;D.1 Parallel plate Frisch grid chamber;208
10.4.4.2;D.2 Boron-lined ion chamber;210
10.4.4.3;D.3 Compensated ion chamber;211
10.4.5;3.4.E Applications of ion chambers;211
10.4.6;3.4.F Advantages and disadvantages of ion chambers;212
10.5;3.5 Proportional counters;213
10.5.1;3.5.A Multiplication factor;215
10.5.2;3.5.B Choice of gas;219
10.5.2.1;B.1 Threshold for avalanche multiplication;219
10.5.2.2;B.2 Quenching;220
10.5.2.3;B.3 Gas gain;222
10.5.3;3.5.C Special types of proportional counters;222
10.5.3.1;C.1 BF3 proportional counter;222
10.5.3.2;C.2 Helium proportional counters;223
10.5.3.3;C.3 Multi-wire proportional counters;224
10.6;3.6 Geiger–Mueller counters;224
10.6.1;3.6.A Current–voltage characteristics;225
10.6.2;3.6.B Dead time;225
10.6.3;3.6.C Choice of gas;228
10.6.4;3.6.D Quenching;229
10.6.4.1;D.1 Internal quenching;229
10.6.4.2;D.2 External quenching;230
10.6.5;3.6.E Advantages and disadvantages of GM counters;230
10.7;3.7 Sources of error in gaseous detectors;230
10.7.1;3.7.A Recombination losses;230
10.7.2;3.7.B Effects of contaminants;232
10.7.2.1;B.1 Radiative capture;234
10.7.2.2;B.2 Dissociative capture;234
10.7.2.3;B.3 Capture without dissociation;235
10.7.3;3.7.C Effects of space charge buildup;235
10.8;3.8 Detector efficiency;240
10.8.1;3.8.A Signal-to-noise ratio;246
10.9;Problems;249
10.10;Bibliography;250
11;4 Liquid-filled detectors;254
11.1;4.1 Properties of liquids;254
11.1.1;4.1.A Charge pair generation and recombination;254
11.1.2;4.1.B Drift of charges;259
11.1.2.1;B.1 Drift of electrons;259
11.1.2.2;B.2 Drift of ions;261
11.2;4.2 Liquid ionization chamber;261
11.2.1;4.2.A Applications of liquid-filled ion chambers;263
11.3;4.3 Liquid proportional counters;263
11.3.1;4.3.A Charge multiplication;263
11.4;4.4 Commonly used liquid detection media;266
11.5;4.5 Sources of error in liquid-filled ionizing detectors;267
11.5.1;4.5.A Recombination;267
11.5.2;4.5.B Parasitic electron capture and trapping;269
11.6;4.6 Cherenkov detectors;274
11.7;4.7 Bubble chamber;276
11.8;4.8 Liquid scintillator detectors;277
11.9;Problems;277
11.10;Bibliography;278
12;5 Solid-state detectors;280
12.1;5.1 Semiconductor detectors;280
12.1.1;5.1.A Structure of semiconductors;280
12.1.2;5.1.B Charge carrier distribution;282
12.1.3;5.1.C Intrinsic, compensated, and extrinsic semiconductors;283
12.1.4;5.1.D Doping;283
12.1.4.1;D.1 Doping with acceptor impurity;285
12.1.4.2;D.2 Doping with donor impurity;286
12.1.5;5.1.E Mechanism and statistics of electron–hole pair production;287
12.1.5.1;E.1 Intrinsic energy resolution;291
12.1.5.2;E.2 Recombination;293
12.1.6;5.1.F Charge conductivity;296
12.1.6.1;F.1 Drift of electrons and holes;296
12.1.7;5.1.G Materials suitable for radiation detection;298
12.1.7.1;G.1 Silicon;299
12.1.7.2;G.2 Germanium;306
12.1.7.3;G.3 Gallium arsenide;311
12.1.7.4;G.4 Cadmium–zinc–tellurium;314
12.1.8;5.1.H The pn-Junction;315
12.1.8.1;H.1 Characteristics of a reverse-biased pn-Diode;317
12.1.8.2;H.2 Signal generation;323
12.1.8.3;H.3 Frequency response;327
12.1.9;5.1.I Modes of operation of a pn-Diode;327
12.1.9.1;I.1 Photovoltaic mode;328
12.1.9.2;I.2 Photoconductive mode;328
12.1.10;5.1.J Desirable properties;329
12.1.10.1;J.1 High radiation fields;331
12.1.10.2;J.2 Low radiation fields;331
12.1.11;5.1.K Specific semiconductor detectors;331
12.1.11.1;K.1 PIN diode;331
12.1.11.2;K.2 Schottky diode;333
12.1.11.3;K.3 Heterojunction diode;334
12.1.11.4;K.4 Avalanche photodiode;334
12.1.11.5;K.5 Surface barrier detector;334
12.1.11.6;K.6 Position-sensitive detectors;334
12.1.11.6.1;Microstrip detectors;334
12.1.11.6.2;Pixel detectors;335
12.1.11.6.3;Other position-sensitive detectors;335
12.1.12;5.1.L Radiation damage in semiconductors;335
12.1.12.1;L.1 Damage mechanism and NIEL scaling;336
12.1.12.2;L.2 Leakage current;336
12.1.12.3;L.3 Type inversion;338
12.1.12.4;L.4 Depletion voltage;338
12.1.12.5;L.5 Charge trapping and carrier lifetime;339
12.1.12.6;L.6 Annealing;339
12.2;5.2 Diamond detectors;339
12.2.1;5.2.A Charge pair production;340
12.2.2;5.2.B Recombination;341
12.2.3;5.2.C Drift of charge pairs;341
12.2.4;5.2.D Leakage current;344
12.2.5;5.2.E Detector design;344
12.2.6;5.2.F Radiation hardness;345
12.2.7;5.2.G Applications;346
12.3;5.3 Thermoluminescent detectors;346
12.3.1;5.3.A Principle of thermoluminescence;347
12.4;Problems;348
12.5;Bibliography;349
13;6 Scintillation detectors and photodetectors;352
13.1;6.1 Scintillation mechanism and scintillator properties;353
13.1.1;6.1.A Basic scintillation mechanism;353
13.1.2;6.1.B Light yield;354
13.1.3;6.1.C Rise and decay times;358
13.1.4;6.1.D Quenching;360
13.1.4.1;D.1 Self-quenching;360
13.1.4.2;D.2 Impurity quenching;360
13.1.4.3;D.3 Thermal quenching;361
13.1.4.4;D.4 Energy quenching;361
13.1.5;6.1.E Density and atomic weight;361
13.1.6;6.1.F Mechanical properties and stability;361
13.1.7;6.1.G Optical properties;362
13.1.8;6.1.H Phosphorescence or afterglow;362
13.1.9;6.1.I Temperature dependence;363
13.1.10;6.1.J Radiation damage;365
13.1.11;6.1.K Scintillation efficiency;366
13.2;6.2 Organic scintillators;370
13.2.1;6.2.A Scintillation mechanism;370
13.2.2;6.2.B Plastic scintillators;373
13.2.3;6.2.C Liquid scintillators;378
13.2.4;6.2.D Crystalline scintillators;382
13.2.4.1;D.1 Anthracene (C14H10);382
13.2.4.2;D.2 p-Terphenyl (C18C14);383
13.2.4.3;D.3 Stilbene (C14H12);384
13.3;6.3 Inorganic scintillators;384
13.3.1;6.3.A Scintillation mechanism;385
13.3.1.1;A.1 Exciton luminescence;385
13.3.1.2;A.2 Dopant luminescence;386
13.3.1.3;A.3 Core valence band luminescence;386
13.3.2;6.3.B Radiation damage;388
13.3.3;6.3.C Some common inorganic scintillators;388
13.3.3.1;C.1 Thallium-doped sodium iodide (NaI:Tl);390
13.3.3.2;C.2 Sodium-doped cesium iodide (CsI:Na);390
13.3.3.3;C.3 Thallium-doped cesium iodide (CsI:Tl);390
13.3.3.4;C.4 Bismuth germanate (BGO);391
13.3.3.5;C.5 Cadmium tungstate (CWO);391
13.3.3.6;C.6 Lead tungstate (PWO);391
13.3.3.7;C.7 Cerium-doped gadolinium silicate (GSO);391
13.3.3.8;C.8 Cerium-doped lutetium aluminum garnet (LuAG:Ce);392
13.3.3.9;C.9 Cerium-doped yttrium aluminum perovskite (YAP:Ce);392
13.3.3.10;C.10 Liquid xenon;392
13.4;6.4 Transfer of scintillation photons;394
13.4.1;6.4.A Types of light guides;394
13.4.1.1;A.1 Simple reflection type;395
13.4.1.2;A.2 Total internal reflection type;395
13.4.1.3;A.3 Hybrid light guides;398
13.5;6.5 Photodetectors;400
13.5.1;6.5.A Photomultiplier tubes;400
13.5.1.1;A.1 Photocathode;401
13.5.1.2;A.2 Electron focusing structure;406
13.5.1.3;A.3 Electron multiplication structure;406
13.5.1.4;A.4 Voltage divider circuit;411
13.5.1.5;A.5 Electron collection;411
13.5.1.6;A.6 Signal readout;412
13.5.1.7;A.7 Enclosure;414
13.5.1.8;A.8 Efficiency;415
13.5.1.8.1;Quantum efficiency;416
13.5.1.8.2;Electron collection efficiency;416
13.5.1.8.3;Overall detection efficiency;416
13.5.1.9;A.9 Sensitivity;417
13.5.1.9.1;Radiant sensitivity;417
13.5.1.9.2;Cathode luminous sensitivity;419
13.5.1.9.3;Anode luminous sensitivity;419
13.5.1.9.4;Blue sensitivity;419
13.5.1.10;A.10 Gain;420
13.5.1.11;A.11 Spatial uniformity;423
13.5.1.12;A.12 Time response;424
13.5.1.13;A.13 Frequency response;425
13.5.1.14;A.14 Energy resolution;426
13.5.1.15;A.15 Modes of operation;427
13.5.1.16;A.16 Noise considerations;430
13.5.1.17;A.17 Noise in analog mode;430
13.5.1.18;A.18 Noise in digital mode;435
13.5.1.19;A.19 Effect of magnetic field;437
13.5.2;6.5.B Photodiode detectors;438
13.5.3;6.5.C Avalanche photodiode detectors;440
13.5.3.1;C.1 Basic desirable characteristics;441
13.5.3.2;C.2 Multiplication process and gain fluctuations;441
13.5.3.3;C.3 Quantum efficiency and responsivity;445
13.5.3.4;C.4 Modes of operation;447
13.5.3.5;C.5 Noise considerations;448
13.5.3.6;C.6 Radiation damage;451
13.6;Problems;451
13.7;Bibliography;452
14;7 Position-sensitive detection and imaging;456
14.1;7.1 Some important terms and quantities;456
14.1.1;7.1.A Spatial resolution;457
14.1.1.1;A.1 Crosstalk;457
14.1.1.2;A.2 Aliasing and antialiasing;458
14.1.1.2.1;Aliasing due to sampling frequency;458
14.1.1.2.2;Aliasing due to reconstruction;464
14.1.1.3;A.3 Point spread function;465
14.1.1.4;A.4 Line spread function;467
14.1.1.5;A.5 Edge spread function;468
14.1.1.6;A.6 Modulation transfer function;469
14.1.2;7.1.B Efficiency;471
14.1.2.1;B.1 Quantum efficiency;472
14.1.2.2;B.2 Spatial detective quantum efficiency (DQE(f));473
14.1.3;7.1.C Sensitivity;474
14.1.4;7.1.D Dynamic range;474
14.1.5;7.1.E Uniformity;474
14.1.6;7.1.F Temporal linearity;474
14.1.7;7.1.G Noise and signal-to-noise ratio (S/N);475
14.2;7.2 Position-sensitive detection;475
14.2.1;7.2.A Types of position-sensitive detectors;475
14.2.1.1;A.1 Array devices;475
14.2.1.2;A.2 Scanning devices;476
14.2.1.3;A.3 Timing devices;476
14.2.2;7.2.B Multiwire proportional chamber;476
14.2.3;7.2.C Multiwire drift chamber (MWPC);479
14.2.4;7.2.D Microstrip gas chamber;481
14.2.5;7.2.E Semiconductor microstrip detector;481
14.3;7.3 Imaging devices;485
14.3.1;7.3.A Conventional imaging;485
14.3.1.1;A.1 X-Ray photographic film;485
14.3.1.2;A.2 Thermoluminescent detector arrays;486
14.3.2;7.3.B Electronic imaging;486
14.3.3;7.3.C Charge-coupled devices;487
14.3.4;7.3.D Direct imaging;487
14.3.4.1;D.1 Properties of a direct imaging CCD;488
14.3.4.2;D.2 Disadvantages of direct imaging;491
14.3.5;7.3.E Indirect imaging;491
14.3.6;7.3.F Microstrip and multiwire detectors;492
14.3.7;7.3.G Scintillating fiber detectors;492
14.4;Problems;494
14.5;Bibliography;494
15;8 Signal processing;498
15.1;8.1 Preamplification;499
15.1.1;8.1.A Voltage-sensitive preamplifiers;500
15.1.2;8.1.B Current-sensitive preamplifiers;502
15.1.3;8.1.C Charge-sensitive preamplifiers;504
15.1.3.1;C.1 Resistive feedback mechanism;507
15.1.3.2;C.2 Pulsed reset mechanism;509
15.2;8.2 Signal transport;511
15.2.1;8.2.A Type of cable;512
15.2.1.1;A.1 Coaxial cable;513
15.2.1.2;A.2 Twisted pair cable;515
15.2.1.3;A.3 Flat ribbon cable;516
15.3;8.3 Pulse shaping;516
15.3.1;8.3.A Delay line pulse shaping;517
15.3.2;8.3.B CR–RC pulse shaping;517
15.3.2.1;B.1 Pole–zero cancelation;522
15.3.2.2;B.2 Baseline shift minimization;525
15.3.3;8.3.C Semi-Gaussian pulse shaping;525
15.3.4;8.3.D Semi-triangular pulse shaping;526
15.4;8.4 Filtering;527
15.4.1;8.4.A Low pass filter;527
15.4.2;8.4.B High pass filter;530
15.4.3;8.4.C Band pass filter;531
15.5;8.5 Amplification;531
15.6;8.6 Discrimination;531
15.6.1;8.6.A Pulse counting;533
15.6.1.1;A.1 Single-channel analyzer;533
15.6.1.2;A.2 Multichannel analyzer;534
15.7;8.7 Analog-to-digital conversion;535
15.7.1;8.7.A A/D conversion-related parameters;535
15.7.1.1;A.1 Conversion time;535
15.7.1.2;A.2 Dead time;535
15.7.1.3;A.3 Resolution;536
15.7.1.4;A.4 Nonlinearity;537
15.7.1.5;A.5 Stability;537
15.7.2;8.7.B A/D conversion methods;537
15.7.2.1;B.1 Digital ramp ADC;537
15.7.2.2;B.2 Successive approximation ADC;538
15.7.2.3;B.3 Tracking ADC;540
15.7.2.4;B.4 Wilkinson ADC;540
15.7.2.5;B.5 Flash ADC;542
15.7.3;8.7.C Hybrid ADCs;544
15.8;8.8 Digital signal processing;544
15.8.1;8.8.A Digital filters;546
15.9;8.9 Electronic noise;547
15.9.1;8.9.A Types of electronic noise;549
15.9.1.1;A.1 Johnson noise;549
15.9.1.2;A.2 Shot noise;551
15.9.1.3;A.3 1/f noise;552
15.9.1.4;A.4 Quantization noise;553
15.9.2;8.9.B Noise in specific components;554
15.9.2.1;B.1 Noise in amplifiers;554
15.9.2.2;B.2 Noise in ADCs;556
15.9.3;8.9.C Measuring system noise;557
15.9.4;8.9.D Noise-reduction techniques;558
15.9.4.1;D.1 Detector signal;558
15.9.4.2;D.2 Frequency filters;558
15.10;Problems;559
15.11;Bibliography;560
16;9 Essential statistics for data analysis;562
16.1;9.1 Measures of centrality;563
16.2;9.2 Measure of dispersion;565
16.3;9.3 Probability;565
16.3.1;9.3.A Frequentist approach;566
16.3.2;9.3.B Bayesian approach;566
16.3.3;9.3.C Probability density function;567
16.3.3.1;C.1 Quantities derivable from a p.d.f.;568
16.3.3.2;C.2 Maximum likelihood method;571
16.3.4;9.3.D Some common distribution functions;574
16.3.4.1;D.1 Binomial distribution;574
16.3.4.2;D.2 Poisson distribution;575
16.3.4.3;D.3 Normal or Gaussian distribution;577
16.3.4.4;D.4 Chi-square (.2) distribution;581
16.3.4.5;D.5 Student’s t distribution;582
16.3.4.6;D.6 Gamma distribution;583
16.3.4.6.1;Using the maximum likelihood method;584
16.4;9.4 Confidence intervals;585
16.5;9.5 Measurement uncertainty;588
16.5.1;9.5.A Systematic errors;588
16.5.2;9.5.B Random errors;588
16.5.3;9.5.C Error propagation;589
16.5.3.1;C.1 Addition of parameters;589
16.5.3.2;C.2 Multiplication of parameters;590
16.5.4;9.5.D Presentation of results;590
16.6;9.6 Confidence tests;591
16.6.1;9.6.A Chi-square (.2) test;592
16.6.2;9.6.B Student’s t test;593
16.7;9.7 Regression;595
16.7.1;9.7.A Simple linear regression;595
16.7.2;9.7.B Nonlinear regression;597
16.8;9.8 Correlation;598
16.8.1;9.8.A Pearson r or simple linear correlation;599
16.9;9.9 Time series analysis;601
16.9.1;9.9.A Smoothing;602
16.10;9.10 Frequency domain analysis;603
16.11;9.11 Counting statistics;604
16.11.1;9.11.A Measurement precision and detection limits;606
16.12;Problems;612
16.13;Bibliography;613
17;10 Software for data analysis;616
17.1;10.1 Standard analysis packages;616
17.1.1;10.1.A ROOT;616
17.1.1.1;A.1 Availability;617
17.1.1.2;A.2 Data handling, organization, and storage;617
17.1.1.3;A.3 Data analysis capabilities;620
17.1.1.4;A.4 Graphics capabilities;620
17.1.1.5;A.5 Using ROOT;621
17.1.1.6;A.6 Examples;622
17.1.2;10.1.B Origin®;626
17.1.2.1;B.1 Data import capabilities;628
17.1.2.2;B.2 Graphics capabilities;628
17.1.2.3;B.3 Data analysis capabilities;628
17.1.2.4;B.4 Programming environment;629
17.1.2.5;B.5 Examples;629
17.1.3;10.1.C MATLAB;632
17.1.3.1;C.1 Toolboxes;632
17.1.3.1.1;Math, statistics, and optimization;632
17.1.3.1.2;Control system design and analysis;633
17.1.3.1.3;Signal processing and communications;633
17.1.3.1.4;Image processing and computer vision;634
17.1.3.1.5;Test and measurement;634
17.1.3.2;C.2 Data acquisition and import capabilities;634
17.1.3.3;C.3 Data analysis capabilities;634
17.1.3.4;C.4 Visualization capabilities;635
17.1.3.5;C.5 Programming environment;635
17.1.3.6;C.6 Examples;635
17.2;10.2 Custom-made data analysis packages;638
17.2.1;10.2.A Data import/export routines;638
17.2.2;10.2.B Data analysis routines;639
17.2.3;10.2.C Code generation;640
17.2.4;10.2.D Result display;640
17.3;Bibliography;640
18;11 Dosimetry and radiation protection;642
18.1;11.1 Importance of dosimetry;642
18.1.1;11.1.A Dose and dose rate;643
18.2;11.2 Quantities related to dosimetry;643
18.2.1;11.2.A Radiation exposure and dose;643
18.2.1.1;A.1 Roentgen (R);644
18.2.1.2;A.2 Absorbed dose;644
18.2.1.3;A.3 Equivalent dose;644
18.2.1.4;A.4 Effective dose;647
18.2.2;11.2.B Flux or fluence rate;648
18.2.3;11.2.C Integrated flux or fluence;649
18.2.4;11.2.D Exposure and absorbed dose: mathematical definitions;651
18.2.5;11.2.E Kerma, cema, and terma;655
18.2.5.1;E.1 Kerma;655
18.2.5.2;E.2 Cema;659
18.2.5.3;E.3 Terma;659
18.2.6;11.2.F Measuring kerma and exposure;659
18.2.7;11.2.G Cavity theories;660
18.2.7.1;G.1 Bragg–Gray cavity theory;660
18.2.7.2;G.2 Spencer–Attix cavity theory;662
18.2.8;11.2.H LET and RBE;663
18.2.9;11.2.I Beam size;664
18.2.10;11.2.J Internal dose;665
18.2.10.1;J.1 Internal dose from charged particles;666
18.2.10.2;J.2 Internal dose from thermal neutrons;666
18.3;11.3 Passive dosimetry;668
18.3.1;11.3.A Thermoluminescent dosimetry;668
18.3.1.1;A.1 Working principle and glow curve;669
18.3.1.2;A.2 Common TL materials;670
18.3.1.3;A.3 Advantages and disadvantages of TL dosimeters;672
18.3.2;11.3.B Optically stimulated luminescence dosimetry;672
18.3.2.1;B.1 Working principle and OSL curve;673
18.3.2.2;B.2 Common OSL materials;673
18.3.3;11.3.C Film dosimetry;674
18.3.3.1;C.1 Advantages and disadvantages of film dosimeters;674
18.3.3.2;C.2 Common radiochromatic materials;675
18.3.4;11.3.D Track etch dosimetry;675
18.3.4.1;D.1 Advantages and disadvantages of track etch dosimeters;676
18.4;11.4 Active dosimetry;677
18.4.1;11.4.A Ion chamber dosimetry;677
18.4.1.1;A.1 Free in air ion chamber dosimetry;677
18.4.1.2;A.2 Cavity ion chamber dosimetry;680
18.4.2;11.4.B Solid-state dosimetry;684
18.4.2.1;B.1 MOSFET dosimeter;684
18.4.2.2;B.2 Diamond dosimeter;686
18.4.3;11.4.C Plastic scintillator dosimeter;687
18.4.4;11.4.D Quartz fiber electroscope;687
18.4.4.1;D.1 Advantages and disadvantages of quartz fiber electroscope;689
18.5;11.5 Microdosimetry;689
18.5.1;11.5.A Microdosimetric quantities;690
18.5.1.1;A.1 Linear energy transfer and dose;690
18.5.1.2;A.2 Specific energy;691
18.5.1.3;A.3 Lineal energy;691
18.5.2;11.5.B Experimental techniques;692
18.5.2.1;B.1 Tissue equivalent proportional counter;692
18.5.2.2;B.2 Solid-state nuclear track detector;695
18.5.2.3;B.3 Silicon microdosimeter;696
18.6;11.6 Biological effects of radiation;697
18.6.1;11.6.A Acute and chronic radiation exposure;699
18.6.1.1;A.1 Acute exposure;699
18.6.1.2;A.2 Chronic exposure;700
18.6.2;11.6.B Effects and symptoms of exposure;700
18.6.2.1;B.1 Somatic effects of radiation;700
18.6.2.2;B.2 Genetic effects of radiation;700
18.6.3;11.6.C Exposure limits;701
18.7;11.7 Radiation protection;702
18.7.1;11.7.A Exposure reduction;703
18.7.1.1;A.1 Time;703
18.7.1.2;A.2 Distance;703
18.7.1.3;A.3 Shielding;704
18.8;Problems;707
18.9;Bibliography;708
19;12 Radiation spectroscopy;710
19.1;12.1 Spectroscopy of photons;710
19.1.1;12.1.A .-ray spectroscopy;710
19.1.2;12.1.B Calibration;714
19.1.3;12.1.C X-ray spectroscopy;715
19.1.3.1;C.1 X-ray absorption spectroscopy;715
19.1.3.2;C.2 X-ray photoelectron spectroscopy (XPS);723
19.1.3.3;C.3 X-ray diffraction spectroscopy (XDS);725
19.2;12.2 Spectroscopy of charged particles;729
19.2.1;12.2.A a-particle spectroscopy;729
19.2.1.1;A.1 Energy of an unknown a source;733
19.2.1.2;A.2 Range and stopping power of a-particles in a gas;733
19.2.1.3;A.3 Activity of an a source;733
19.2.2;12.2.B Electron spectroscopy;734
19.3;12.3 Neutron spectroscopy;735
19.3.1;12.3.A Neutrons as matter probes;735
19.3.2;12.3.B Neutron spectrometry techniques;738
19.3.2.1;Triple-axis spectrometry;741
19.3.2.2;B.1 High flux backscattering spectrometer;742
19.3.2.3;B.2 Filter analyzer spectrometer;743
19.3.2.4;B.3 Disk chopper spectrometer;743
19.3.2.5;B.4 Fermi chopper spectrometer;744
19.3.2.6;B.5 Spin echo spectrometer;745
19.4;12.4 Mass spectroscopy;747
19.5;12.5 Time spectroscopy;748
19.6;Problems;750
19.7;Bibliography;750
20;13 Data acquisition systems;752
20.1;13.1 Data acquisition chain;752
20.1.1;13.1.A Pulse counting;752
20.1.1.1;A.1 Slow pulse counting;753
20.1.1.2;A.2 Fast pulse counting;753
20.1.2;13.1.B Energy spectroscopy;754
20.1.3;13.1.C Time spectroscopy;754
20.1.4;13.1.D Coincidence spectroscopy;755
20.2;13.2 Modular instruments;756
20.2.1;13.2.A NIM standard;756
20.2.1.1;A.1 NIM layout;756
20.2.1.2;A.2 NIM modules;757
20.2.1.3;A.3 NIM logic;757
20.2.1.4;A.4 Signal transport;758
20.2.2;13.2.B CAMAC standard;759
20.2.2.1;B.1 CAMAC layout;760
20.2.2.2;B.2 CAMAC controllers;761
20.2.2.3;B.3 CAMAC logic;761
20.2.3;13.2.C VME standard;761
20.2.3.1;C.1 VME layout;762
20.2.3.2;C.2 VME backplane;762
20.2.3.3;C.3 VME modules;762
20.2.3.4;C.4 VME logic;763
20.2.4;13.2.D FASTBUS standard;763
20.2.4.1;D.1 FASTBUS layout;763
20.2.4.2;D.2 FASTBUS backplane;763
20.3;13.3 PC-based systems;764
20.3.1;13.3.A PCI boards;764
20.3.2;13.3.B PC serial port modules;764
20.3.3;13.3.C PC parallel port modules;766
20.3.4;13.3.D USB-based modules;767
20.3.5;13.3.E TCP/IP-based systems;767
20.4;Bibliography;768
21;Appendix A: Essential electronic measuring devices;770
21.1;A.1 Multimeters;770
21.1.1;A.1.A Measuring voltage and current;770
21.1.2;A.1.B Analog multimeter;771
21.1.3;A.1.C Digital multimeter;771
21.1.4;A.1.D Measuring voltage;772
21.1.5;A.1.E Measuring current;772
21.2;A.2 Oscilloscopes;772
21.2.1;A.2.A Analog oscilloscope;772
21.2.1.1;A.1 Attenuator;773
21.2.1.2;A.2 Electron gun;773
21.2.1.3;A.3 Electron beam deflection systems;774
21.2.1.4;A.4 Trigger system;775
21.2.2;A.2.B Digital oscilloscopes;776
21.2.3;A.2.C Signal probes;777
21.2.3.1;C.1 Passive probes;777
21.2.3.2;C.2 Active probes;778
22;Appendix B: Constants and conversion factors;780
22.1;B.1 Constants;780
22.2;B.2 Masses and electrical charges of particles;780
22.3;B.3 Conversion prefixes;781
23;Appendix C: VME connector pin assignments;782


1 Properties and sources of radiation
This chapter gives an overview of the properties and sources of radiation. All the particles that are important with respect to radiation detection and measurements have been described and their properties have been discussed. The emission of particles from radioactive sources and their passage through different materials have been qualitatively and quantitatively elaborated. Keywords
Radioactivity; Particles and Waves; Sources of Radiation; Particle Interactions; Alpha Particles; Beta Particles; Elementary Particles; Radiation Sources Mass and energy are the two entities that make up our universe. At the most basic level, these two entities represent a single reality that sometimes shows itself as mass and sometimes as energy. They are intricately related to each other through Einstein’s famous mass–energy relation, E=mc2. Just like matter, energy is also capable of moving from one point in space to another through particles or waves. These carriers of energy always originate from some source and continue their travel in space until they get absorbed by or annihilated in some material. The term “radiation” is used to describe this transportation of mass and energy through space. Since the realization of its potential, radiation has played a central role in technological developments in a variety of fields. For example, we all enjoy the benefits of radiation in medical diagnostics and treatment. On the other hand, the world has also witnessed the hazards of radiation in the form of atomic explosions and radiation exposure. Whether we think of radiation as a hazard or a blessing, its study is of paramount importance for our survival and development. If we look carefully at the benefits and harms brought about by the use or misuse of radiation, we would reach the conclusion that its advantages clearly outweigh its disadvantages. Radiation has unlimited potential, and its proper use can be highly beneficial for mankind. This chapter will introduce the reader to different types of radiation, their properties, and their sources. The mechanisms through which the particles interact with matter will be discussed in detail in the next chapter. 1.1 Types of radiation
Radiation can be categorized in different ways, such as ionizing and non-ionizing, particles and waves, hazardous and non-hazardous, etc. However, none of these categorizations draw solid boundaries between properties of the individual particles comprising the radiation; rather, they show the bulk behavior of particle beams. For example, it would not be correct to assert that an electron always ionizes atoms with which it interacts by arguing that it belongs to the category of ionizing particles. All we can say is that if a large number of electrons interact with a large number of atoms, the predominant mode of interaction will lead to the ionization of atoms. Sometimes radiation is characterized on the basis of its wave and particle properties. However, as we will explore in the next section, this characterization is somewhat vague and can be a cause of confusion. The reason is that, according to modern physics, one can associate a wavelength with every particle whether it carries a mass or not. This implies that a particle having mass can act as a wave and take part in the formation of interference and diffraction patterns. On the other hand, light, which is comprised of photons, is generally described by its wave character. Let us have a look at the third category mentioned above: hazardous and non-hazardous. There are particles that pass through our bodies in large numbers every second (such as neutrinos from the Sun) but do not cause any observable damage. Still, there is a possibility that some of these particles could cause mutations in our body cells, which could ultimately lead to cancer.1 On the other hand, there are particles, such as neutrons, that are known to be extremely hazardous to biological organisms, but no one can ever be absolutely certain that a particular neutron would definitely cause harm. The above arguments point toward the idea that the characterization of particles should be based on statistical nature of their interactions. What this really means is that if we have a very large number of a certain kind of particle, there is a high probability that most of them would behave in the manner characteristic of their categorization. For example, long exposure to a highly intense beam of neutrons would most definitely cause skin burns and most probably cancer, but it would be wrong to assume that a single neutron would definitely cause the same effects. The words probability and chance were mentioned in the preceding paragraphs. What does particle interaction have to do with chance? Well, the theoretical foundation of particle interaction is quantum mechanics, which quantifies the variables related to particle motion, such as momentum, energy, and position, in probabilistic terms. For example, in quantum mechanics we talk about the probability of a particle being present at a specific place at a certain time, but we do not claim that the particle will definitely be there at that time. Nothing is absolute in quantum mechanics. We will learn more about this when we study the concept of cross section in the next chapter. 1.2 Waves or particles?
If we think about light without any prior knowledge, we would assume it to be composed of waves that are continuously emitted from a source (such as a light bulb). In fact, this was the dominant perception among scientists until the start of the twentieth century. In those days a major problem of theoretical physics had started boggling the minds of physicists. They had found it impossible to explain the dependence of energy radiated by a black body (a heated cavity) on the wavelength of emitted radiation if they considered light to have continuous wave characteristics. This mystery was solved by Max Planck, who developed a theory in which light waves were not continuous but quantized and propagated in small wave packets. This wave packet was later called a photon. This theory and the corresponding mathematical model were extremely successful in explaining the black body spectrum. The concept was further confirmed by Einstein when he explained the photoelectric effect, an effect in which a photon having the right amount of energy knocks off a bound electron from an atom. Max Planck proposed that electromagnetic energy is emitted and absorbed in the form of discrete bundles. The energy carried by such a bundle (i.e., a photon) is proportional to the frequency of the radiation. =h? (1.2.1) (1.2.1) Here h=6.626×10-34 J s is Planck’s constant, which was initially determined by Max Planck to solve the black body spectrum anomaly. It is now considered to be a universal constant. The frequency v and wavelength ? of electromagnetic radiation are related to its velocity of propagation in a vacuum by c=v?. If the radiation is traveling through another medium, its velocity should be calculated by =n??, (1.2.2) (1.2.2) where n is the refractive index of the medium. It has been found that the refractive index of a material has a nonlinear dependence on the frequency of radiation. Experiments confirmed that radiation sometimes behaves as particles and not as continuous waves. On the other hand, there were effects like interference, which could only be explained if light was considered to have continuous wave characteristics. To add to the confusion, de Broglie in 1920 introduced the idea that sometimes particles, such as electrons, behave like waves. He proposed that one could associate a wavelength to any particle having momentum through the relation =hp. (1.2.3) (1.2.3) For a particle moving close to the speed of light (the so-called relativistic particle) and rest mass m0 (mass of the particle when it is not moving), the above equation can be written as =hm0v1-v2c2. (1.2.4) (1.2.4) For slow-moving particles with vc, the de Broglie relation reduces to =hmv. (1.2.5) (1.2.5) De Broglie’s theory was experimentally confirmed at Bell Labs, where electron diffraction patterns consistent with the wave picture were observed. Based on these experiments and their theoretical explanations, it is now believed that all the entities in the universe simultaneously possess localized (particle-like) and distributed (wave-like) properties. In simple terms, particles can behave as waves and waves can behave as particles.2 This principle, known as the wave–particle duality, has played a central role in the development of quantum physics. Example: Compare the de Broglie wavelengths of a proton and an alpha particle moving at the same speed. Assume the velocity to be much smaller than the velocity of light. The mass of an a-particle is about four times the mass of a proton. Solution: Since the velocity is much less than the speed of light, we can use the approximation 1.2.5, which for a proton and an a-particle becomes ?p=hmpvand?a=hmav. Dividing the first equation with the second gives p?a=mamp. An a-particle consists of two...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.