E-Book, Englisch, 576 Seiten
Reihe: Micro and Nano Technologies
E-Book, Englisch, 576 Seiten
Reihe: Micro and Nano Technologies
ISBN: 978-0-323-29643-4
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Waqar Ahmed is an experienced professor and Director of Enterprise at the University of Lincoln's College of Science. With a background in nano(bio)materials and extensive experience in research, leadership, management, and lecturing, he brings a wealth of knowledge and expertise to this book. His contributions will help readers gain a fundamental understanding of the applications of engineering management principles through practical case studies and graded self-assessment questions. Waqar couples vast academic experience with a decade of industrial and technology transfer experience in the UK and internationally. He has published extensively research papers, reviews and books including several with Elsevier such as Advances in Medical and Surgical Engineering; Emerging Nanotechnologies series including Emerging nanotechnologies for Manufacturing (1st and 2nd editions); Emerging nanotechnologies for Dentistry (1st and 2nd Editions) and Emerging Nanotechnologies for Renewable Energy.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Emerging Nanotechnologies for Manufacturing;4
3;Copyright Page;5
4;Contents;6
5;Preface;16
6;List of Contributors;18
7;1 Nanotechnology to Nanomanufacturing;22
7.1;1.1 Introduction;22
7.2;1.2 Approaches to Nanotechnology;23
7.3;1.3 Transition from Nanotechnology to Nanomanufacturing;24
7.3.1;1.3.1 Top-down approach;25
7.3.2;1.3.2 Bottom-up approach;26
7.4;1.4 Conclusions;31
7.5;References;34
8;2 Gas phase nanofication: a strategy to impart fast response in sensors;35
8.1;2.1 Introduction;36
8.2;2.2 Proposed Rationale;37
8.3;2.3 Methods of Establishing the Desired Redox po2;38
8.4;2.4 Sample Preparation;41
8.4.1;2.4.1 Materials and processing;41
8.4.2;2.4.2 Characterization;43
8.4.3;2.4.3 High temperature reductive etching process;43
8.4.4;2.4.4 Gas sensing experiments;44
8.5;2.5 Results and Discussion;44
8.5.1;2.5.1 Mo- and MoO3-based studies;44
8.5.2;2.5.2 W- and WO3-based studies;51
8.5.3;2.5.3 TiO2-based studies;62
8.6;2.6 Conclusions;71
8.7;References;72
9;3
Advanced characterization techniques for nanostructures;74
9.1;3.1 Measurement of the Topology of Nanostructures;75
9.1.1;3.1.1 Field emission scanning electron microscope;75
9.1.2;3.1.2 Scanning probe microscopy;76
9.1.3;3.1.3 Optical microscopes;82
9.2;3.2 MEasurement of Internal Geometries of Nanostructures;87
9.2.1;3.2.1 Transmission electron microscope;87
9.2.2;3.2.2 Focused ion beam;88
9.2.3;3.2.3 X-ray diffraction;90
9.2.4;3.2.4 Mercury porosimetry;91
9.3;3.3 Measurement of Composition of Nanostructures;94
9.3.1;3.3.1 Energy dispersive X-ray spectroscopy;94
9.3.2;3.3.2 X-ray photoelectron spectroscopy;96
9.3.3;3.3.3 Secondary ion mass spectroscopy;98
9.3.4;3.3.4 Auger electron spectroscopy;99
9.4;3.4 Conclusion;101
9.5;References;102
10;4
Non-lithographic techniques for nanostructuring of thin films and bulk surfaces;107
10.1;4.1 Introduction;107
10.2;4.2 Template-assisted nanostructuring;109
10.3;4.3 Electric field induced nanostructuring;122
10.4;4.4 Laser-induced nanostructuring;128
10.5;4.5 Vapour–Liquid–Solid technique;134
10.6;4.6 Summary and Outlook;139
10.7;Acknowledgements;140
10.8;References;140
11;5 Engineered carbon nanotube field emission devices;146
11.1;5.1 Introduction;147
11.1.1;5.1.1 Synthesis;149
11.1.2;5.1.2 Positional Control;160
11.1.3;5.1.3 Alignment Control;163
11.2;5.2 Field Emission;165
11.2.1;5.2.1 Electron Microscopy;176
11.2.2;5.2.2 Parallel Electron Beam Lithography;178
11.2.3;5.2.3 X-ray Sources;180
11.2.4;5.2.4 Microwave Sources;183
11.2.5;5.2.5 Displays;184
11.2.6;5.2.6 Gas Ionization Sensors and Gauges;187
11.2.7;5.2.7 Interstellar Propulsion;190
11.3;5.3 Conclusion;190
11.4;Acknowledgments;191
11.5;References;191
12;6 Upconverting fluorescent nanoparticles for biological applications;208
12.1;6.1 Introduction;208
12.2;6.2 The Mechanism of Fluorescent UC;210
12.3;6.3 Upconverting Nanoparticles;210
12.4;6.4 Conjugation of Biomolecules to UCN;211
12.5;6.5 UCN for Biological Applications;214
12.5.1;6.5.1 UCN in immunoassays;214
12.5.2;6.5.2 UCN in bioimaging;215
12.5.3;6.5.3 UCN for photodynamic therapy;216
12.6;6.6 Conclusion;218
12.7;References;218
13;7 Micro- and nanomachining;223
13.1;7.1 Introduction;224
13.2;7.2 Machining Effects at the Microscale;224
13.2.1;7.2.1 Shear Angle Prediction;227
13.2.2;7.2.2 Plastic Behavior at Large Strains;231
13.2.3;7.2.3 Langford and Cohen’s Model;231
13.2.4;7.2.4 Walker and Shaw’s Model;232
13.2.5;7.2.5 Usui’s Model;233
13.2.6;7.2.6 Sawtooth Chip Formation in Hard Turning;233
13.2.7;7.2.7 Fluid-Like Flow in Chip Formation;234
13.3;7.3 Size Effects in Micromachining;235
13.4;7.4 Nanomachining;235
13.4.1;7.4.1 Nanometric Machining;236
13.4.2;7.4.2 Theoretical Basis of Nanomachining;237
13.4.3;7.4.3 Comparison of Nanometric Machining and Conventional Machining;248
13.5;Acknowledgments;248
13.6;References;248
14;8 Design of experiments: a key to innovation in nanotechnology;251
14.1;8.1 Introduction to DoE;252
14.2;8.2 OFAT: The Predominant Method Used in Practice;253
14.3;8.3 Traditional Methods Used in Research and Development;255
14.3.1;8.3.1 Completely randomized design;256
14.3.2;8.3.2 Two-level factorial design;257
14.3.3;8.3.3 RSM;258
14.3.4;8.3.4 Taguchi’s method;259
14.3.5;8.3.5 Opportunities for improvement in experimentation;260
14.4;8.4 Modern DoE Methods Appropriate for Nanotechnology and Nanomanufacturing;261
14.4.1;8.4.1 Split plot design and its variants;261
14.4.2;8.4.2 MSSP design;263
14.4.3;8.4.3 Repeated measures;264
14.4.4;8.4.4 Saturated and supersaturated design;264
14.4.5;8.4.5 Mixture design;265
14.4.6;8.4.6 Computer deterministic experiments;265
14.4.7;8.4.7 Computer-generated design: Alphabetical optimal design;266
14.5;8.5 Summary of Nanotechnology Articles that Use Statistical Experimentation;266
14.6;8.6 Final Remarks;271
14.7;References;271
15;9 Environmental and occupational health issues with nanoparticles;276
15.1;9.1 Introduction;276
15.2;9.2 Potential Health Effects;277
15.3;9.3 Current State of the Literature;278
15.4;9.4 Characterization of Airborne Nanoparticles;284
15.5;9.5 Conclusions;289
15.6;References;289
16;10 Commercialization of nanotechnologies: technology transfer from university research laboratories;291
16.1;10.1 Introduction;292
16.1.1;10.1.1 Venture Capitalists;292
16.1.2;10.1.2 Start-Up Companies in Nanotechnology;293
16.2;10.2 Role of Government in Commercialization;293
16.3;10.3 Role of Academic Research in Commercializing Nanotechnology Products;294
16.4;10.4 Technology Transfer for Nanotechnology Products;296
16.5;10.5 IP—Impact and Ownership;297
16.5.1;10.5.1 Patents;297
16.5.2;10.5.2 Trade Secrets;297
16.5.3;10.5.3 Copyright;297
16.6;10.6 Role of the Entrepreneur, Major Corporations, and National Laboratories in Commercialization;298
16.7;10.7 Concluding Remarks;298
16.8;Acknowledgments;299
16.9;References;299
16.10;Internet Resources;299
17;11 Fabrication of hydrogel micropatterns by soft photolithography;300
17.1;11.1 Introduction;300
17.2;11.2 Microfabrication;301
17.2.1;11.2.1 Microfabrication techniques;302
17.3;11.3 Lithography;303
17.4;11.4 Hydrogel as a biomaterial;303
17.5;11.5 Soft photolithography of hydrogel micropatterns;304
17.5.1;11.5.1 Fabrication of PDMS st304
17.5.2;11.5.2 Surface functionalization of silicon substrates by silanization;307
17.5.3;11.5.3 Soft photolithography;308
17.6;11.6 Conclusion;311
17.7;References;312
18;12 Nanocrystalline diamond for RF-MEMS applications;315
18.1;12.1 Introduction;315
18.2;12.2 Diamond crystal structure and properties;316
18.3;12.3 Chemical vapour deposition of diamond films;317
18.4;12.4 Growth mechanism of NCD films;319
18.5;12.5 Techniques for the characterization of NCD films;320
18.6;12.6 Mechanical resonators;325
18.7;12.7 Electrostatic and thermal switches;326
18.8;12.8 DESIGN of the thermally actuated NCD actuator;327
18.9;12.9 Fabrication and integration;328
18.10;12.10 Measurement and analysis;331
18.11;Acknowledgements;336
18.12;References;337
19;13 Analysis of the effects of micromachining using nanostructured cutting tools;340
19.1;13.1 Introduction;340
19.2;13.2 Computational Analyses;341
19.2.1;13.2.1 Computational Analysis of Temperature in Micromachining;341
19.2.2;13.2.2 Finite Element Analysis;350
19.3;13.3 Computational Results;351
19.3.1;13.3.1 Uncoated Microtools;351
19.3.2;13.3.2 Coated Cutting Tools;352
19.4;13.4 Discussion;358
19.5;13.5 Conclusions;362
19.6;Acknowledgments;362
19.7;References;362
20;14 Metal oxide nanopowder;364
20.1;14.1 Introduction;365
20.2;14.2 Use of nanopowders since the year 2000;369
20.3;14.3 The chemistry of metal oxide nanopowder;373
20.3.1;14.3.1 Important behaviour of metal oxide nanopowder;375
20.3.2;14.3.2 Criteria for the synthesis of metal oxide;375
20.3.3;14.3.3 Requirements for the synthesis of nanoparticles;378
20.3.4;14.3.4 Controlling factors for the growth of nanopowder;378
20.4;14.4 Different methods used for the synthesis of metal oxide nanopowder;380
20.4.1;14.4.1 High temperature synthesis;380
20.4.2;14.4.2 Low temperature synthesis;381
20.4.3;14.4.3 Replication method;381
20.4.4;14.4.4 Mechanical attrition;381
20.4.5;14.4.5 Hydrothermal synthesis;381
20.4.6;14.4.6 Inverse micelle method;382
20.4.7;14.4.7 Sol–gel process;383
20.4.8;14.4.8 General mechanism for sol–gel process;385
20.4.9;14.4.9 Acid-catalysed mechanism;385
20.4.10;14.4.10 Pechini method;388
20.5;14.5 Characterization of metal oxide nanopowder;391
20.5.1;14.5.1 Infrared spectroscopy;391
20.5.2;14.5.2 Ultraviolet spectroscopy;392
20.5.3;14.5.3 Thermal analysis;392
20.5.4;14.5.4 Raman spectroscopy;392
20.5.5;14.5.5 Atomic force microscopy;393
20.5.6;14.5.6 X-ray diffraction studies;394
20.5.7;14.5.7 Wide angle X-ray scattering;394
20.5.8;14.5.8 Small angle X-ray scattering;394
20.5.9;14.5.9 Electron microscopy;395
20.5.10;14.5.10 Transmission electron microscopy;395
20.5.11;14.5.11 Scanning electron microscopy;395
20.5.12;14.5.12 Characterization of porosity;396
20.6;14.6 Application based on phase transfer;397
20.6.1;14.6.1 The synthesis of monometal-based nanopowder;397
20.6.2;14.6.2 Use of titania film in car;405
20.7;14.7 Synthesis of bimetallic alkoxide for the preparation of bimetallic oxide nanopowder;405
20.7.1;14.7.1 Physico-chemical properties of bimetallic alkoxides [94–96];406
20.7.2;14.7.2 Preparation of bimetallic oxide nanopowder via sol–gel process;409
20.7.3;14.7.3 Some SEM data of bimetallic oxide;410
20.8;14.8 APPlications of metal oxide for photoluminescence;413
20.9;14.9 Conclusions;418
20.10;14.10 Future prospects;418
20.11;Acknowledgement;419
20.12;Dedication;419
20.13;References;419
21;15 Some approaches to large-scale manufacturing of liposomes;423
21.1;15.1 Introduction;424
21.2;15.2 Structure and Self-Assembly of Phospholipids;425
21.3;15.3 Biological Functionality of Liposomes;426
21.3.1;15.3.1 Conventional Liposomes;426
21.3.2;15.3.2 Cationic Liposomes;426
21.3.3;15.3.3 Thermosensitive (Temperature-Sensitive) Liposomes;426
21.3.4;15.3.4 pH-Sensitive Liposomes;427
21.3.5;15.3.5 Long-Circulating (Sterically Stabilized) Liposomes;427
21.3.6;15.3.6 Ultradeformable Liposomes (Transferosomes);427
21.4;15.4 Methods of Liposome Preparation;428
21.4.1;15.4.1 Thin Film Hydration Method;428
21.4.2;15.4.2 Reverse Phase Evaporation Vesicles;428
21.4.3;15.4.3 Freeze-Drying Method;429
21.4.4;15.4.4 Proliposome Methods;429
21.5;15.5 Large-Scale Manufacture of Particulate-Based Proliposomes;432
21.5.1;15.5.1 Proliposomes Manufactured Using Fluidized-Bed Coating;433
21.5.2;15.5.2 Proliposomes Produced Using Air-Jet (Fluid Energy) Milling;433
21.5.3;15.5.3 Proliposomes Produced Using Spray Drying;434
21.6;15.6 Large-Scale Manufacture of Ethanol-Based Proliposomes;434
21.7;15.7 Conclusions;434
21.8;References;434
22;16 Nanocoatings in medicine: antiquity and modern times;439
22.1;16.1 Introduction;439
22.2;16.2 What Is a Nanocoating?;440
22.3;16.3 Common Nanocoating Methods;442
22.4;16.4 Nonmedical Applications of Nanocoating Technologies;445
22.4.1;16.4.1 Nanoprotection;445
22.4.2;16.4.2 Mechanical Properties;446
22.4.3;16.4.3 New Functionality;447
22.5;16.5 Nanocoating of Medical Devices;449
22.5.1;16.5.1 Dentistry;449
22.5.2;16.5.2 Implants;450
22.5.3;16.5.3 Stents;452
22.5.4;16.5.4 Cells;453
22.5.5;16.5.5 Miscellaneous;454
22.6;16.6 Nanocoating of Pharmaceutical Dosage Forms;456
22.7;16.7 Conclusions;460
22.8;References;460
23;17 Smart precursors for smart nanoparticles;465
23.1;17.1 Introduction;468
23.2;17.2 Type of Nanoparticles;473
23.2.1;17.2.1 Novel Properties of Materials at the Nanoscale;473
23.3;17.3 Structure of Nanoparticles [16–19];474
23.4;17.4 Conductive Properties [3,20,21];475
23.5;17.5 Metal Oxide;477
23.6;17.6 Shape of the Particles;480
23.6.1;17.6.1 Particle Size and its Distributions;480
23.7;17.7 Surface Charge Density and Their Colloidal Stability;480
23.7.1;17.7.1 Interfacial Polarity;481
23.7.2;17.7.2 Cross-Linking;481
23.7.3;17.7.3 Functionality;481
23.8;17.8 Chemistry of Metal Alkoxides Used as Single-Source Molecular Precursors for the Synthesis of Nanomaterials [25–78];481
23.8.1;17.8.1 Geometrical Concept in the Design of Molecular Structure [26–29];482
23.8.2;17.8.2 Schematic Representation of the Major Experimental Steps Involved in the Synthesis of Mixed Metal Oxide Nanopowder;485
23.8.3;17.8.3 Reactivity of Metal Substitution Reactions;486
23.9;17.9 Molecular Structure Plays the Decisive Role;486
23.9.1;17.9.1 Synthesis of Nanomaterials [41–61];489
23.9.2;17.9.2 Capping Agents;493
23.9.3;17.9.3 Liquid-Phase Synthesis;493
23.9.4;17.9.4 Advantages of Vapor-Phase Synthesis;501
23.9.5;17.9.5 Methods Used for Liquid or Vapor Precursor Process;503
23.9.6;17.9.6 Processing for the Synthesis of Nanostructure Materials in the Nanoparticle;503
23.9.7;17.9.7 Vacuum Thermal Evaporation Technique for Deposition [76,244–247];503
23.10;17.10 Experimental Techniques;505
23.10.1;17.10.1 FTIR Spectra;506
23.10.2;17.10.2 Difference in Energy States = Energy of Light Absorbed;507
23.10.3;17.10.3 Calcination at 450°C for 4 h in dry air;507
23.10.4;17.10.4 Ultraviolet and Visible Spectroscopy;508
23.10.5;17.10.5 Thermal Gravimetric Analysis and Differential Thermal Analysis;514
23.10.6;17.10.6 Specific Surface Area;515
23.10.7;17.10.7 Scanning Electron Microscopy;519
23.10.8;17.10.8 Probe Microscopy;521
23.11;17.11 Diffraction Techniques;521
23.11.1;17.11.1 Neutron Diffraction;522
23.12;17.12 Miscellaneous Techniques [282,283];525
23.12.1;17.12.1 Confocal Laser Scanning Microscopy;525
23.12.2;17.12.2 Extended X-Ray Absorption Fine Structure (EXAFS);525
23.12.3;17.12.3 X-Ray Fluorescence Spectroscopy;526
23.12.4;17.12.4 Mass Spectroscopy;526
23.12.5;17.12.5 Photoelectron Spectroscopy;526
23.12.6;17.12.6 X-Ray Photoelectron Spectroscopy;526
23.12.7;17.12.7 Brunauer, Emmett and Teller (BET);527
23.13;17.13 Applications of Nanomaterials;527
23.14;17.14 Uses of Nanomaterials for Various Applications;528
23.14.1;17.14.1 Thin Coatings [293–297];529
23.15;17.15 Conclusion;542
23.16;Dedication;542
23.17;References;542
24;Index;560