Buch, Englisch, 386 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 7214 g
Reihe: Contributions to Statistics
Methodologies and Applications
Buch, Englisch, 386 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 7214 g
Reihe: Contributions to Statistics
ISBN: 978-3-319-41572-7
Verlag: Springer International Publishing
The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data.
The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for future research in the theory of regularization methods, in algorithmic development, and in methodologies for different application areas; and 3) facilitate collaboration between theoretical and subject-specific researchers.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
Weitere Infos & Material
Preface.- Introduction.- Unsupervised Bump Hunting Using Principal Components.- Statistical Process Control Charts as a Tool for Analyzing Big Data.- Empirical Likelihood Test for High Dimensional Generalized Linear Models.- Identifying gene-environment interactions associated with prognosis using penalized quantile regression.- A Computationally Efficient Approach for Modeling Complex and Big Survival Data.- Regularization after marginal learning for ultra-high dimensional regression models.- Tests of concentration for low-dimensional and high-dimensional directional data.- Random Projections For Large-Scale Regression.- How Different are Estimated Genetic Networks of Cancer Subtypes?.- Analysis of correlated data with error-prone response under generalized linear mixed models.- High-Dimensional Classification for Brain Decoding.- Optimal shrinkage estimation in heteroscedastic hierarchical linear models.- Bias-reduced moment estimators of Population Spectral Distribution and their applications.- Testing in the Presence of Nuisance Parameters: Some Comments on Tests Post-Model-Selection and Random Critical Values.- A Mixture of Variance-Gamma Factor Analyzers.- Fast Community Detection in Complex Networks with a K-Depths Classifier.