Ahmad | Data Communication Principles | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 293 Seiten

Ahmad Data Communication Principles

For Fixed and Wireless Networks
1. Auflage 2007
ISBN: 978-0-306-47793-5
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

For Fixed and Wireless Networks

E-Book, Englisch, 293 Seiten

ISBN: 978-0-306-47793-5
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



"Data Communication Principles for Fixed and Wireless Networks" focuses on the physical and data link layers. Included are examples that apply to a diversified range of higher level protocols such as TCP/IP, OSI and packet based wireless networks. Performance modeling is introduced for beginners requiring basic mathematics.

Separate discussion has been included on wireless cellular networks performance and on the simulation of networks. Throughout the book, wireless LANS has been given the same level of treatment as fixed network protocols. It is assumed that readers would be familiar with basic mathematics and have some knowledge of binary number systems. "Data Communication Principles for Fixed and Wireless Networks" is for students at the senior undergraduate and first year graduate levels. It can also be used as a reference work for professionals working in the areas of data networks, computer networks and internet protocols.

Ahmad Data Communication Principles jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Table of Contents;9
2;Preface;15
3;1. Computer Communications Networks - Introduction;18
3.1;1.1. Main Components;19
3.1.1;1.1.1. The Computer System;19
3.1.2;1.1.2. The Communications System;20
3.1.3;1.1.3. The Networking System;21
3.1.3.1;1.1.3.1. Communication Systems Versus Networking Systems;21
3.2;1.2. Network Development Example;22
3.2.1;1.2.1. Three Role Players;22
3.2.2;1.2.2. Network Design;23
3.2.2.1;1.2.2.1. User/IT Staff;25
3.2.2.2;1.2.2.2. Network Provider;25
3.2.2.3;1.2.2.3. Network Designer/Vendor;25
3.2.2.4;1.2.2.4. Relevance of the text to the above role players;25
3.3;1.3. Standardization;26
3.3.1;1.3.1. Example 1 - Communication of Voice;26
3.3.2;1.3.2. Example 2 - File Transfer;27
3.3.2.1;1.3.2.1. Circuit Switching;28
3.3.2.2;1.3.2.2. Packet Switching;29
3.4;1.4. Classification of Networks There are several ways of;29
3.4.1;1.4.1. Local Area Networks (LANs);29
3.4.2;1.4.2. Wide Area Networks (WANs);29
3.4.3;1.4.3. Metropolitan Area Networks (MANs);30
3.5;1.5. Network Protocol Architecture;30
3.5.1;1.5.1. Protocols;30
3.5.2;1.5.2. Standards;30
3.5.3;1.5.3. Protocol Architecture;31
3.5.3.1;1.5.3.1. A Protocol Layer;31
3.6;1.6. Example of a Protocol Architecture;31
3.6.1;1.6.1. Open System;32
3.7;1.7. Summary;32
3.8;1.8. Review Questions;33
4;2. Network Architectures - Examples;34
4.1;2.1. The OSI Reference Model (OSI-RM);35
4.1.1;2.1.1. OSI-RM Characteristics and Terminology;35
4.1.2;2.1.2. Communications Model within an OSI Node;36
4.1.3;2.1.3. Communications Across the OSI Network;39
4.1.4;2.1.4. Inter-layer communication;40
4.1.4.1;2.1.4.1. The Role of the Lower Layers;41
4.1.5;2.1.5. OSI-RM Layer Definitions and Functions;42
4.1.5.1;2.1.5.1. The Physical Layer;42
4.1.5.2;2.1.5.2. The Data Link Control Layer (DLC);43
4.1.5.3;2.1.5.3. The Network Layer (NET);44
4.1.5.3.1;2.1.5.3.1. Datagram or Connectionless Switching;45
4.1.5.3.2;2.1.5.3.2. Virtual Circuit (VC) Switching;45
4.1.5.3.3;2.1.5.3.3. Circuit Switching (CS);46
4.1.5.3.4;2.1.5.3.4. A Comparison of Switching Schemes;47
4.1.5.3.5;2.1.5.3.5. Quality of Service (QoS);47
4.1.5.4;2.1.5.4. The Transport Layer (TL);51
4.1.5.5;2.1.5.5. The Session Layer;51
4.1.5.6;2.1.5.6. The Presentation Layer;51
4.1.5.7;2.1.5.7. The Application Layer;52
4.2;2.2. The TCP/IP Protocol Suite;53
4.2.1;2.2.1. The Internet Protocol (IP);56
4.2.2;2.2.2. The Transmission Control Protocol (TCP);57
4.2.3;2.2.3. The Application Protocols for the Internet;58
4.2.4;2.2.4. Lower Layers of the Internet;58
4.3;2.3. The IEEE Wireless Local Area Network (IEEE WLAN);59
4.3.1;2.3.1. Local Area Networks;59
4.3.2;2.3.2. Wireless Local Area Networks;60
4.3.3;2.3.3. The Physical Layer (PHY);62
4.3.3.1;2.3.3.1. Spread Spectrum Communications;63
4.3.4;2.3.4. The Medium Access Control (MAC) Layer;63
4.3.4.1;2.3.4.1. Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA);64
4.4;2.4. Framework for Studying a Protocol;64
4.5;2.5. Standardization of Protocols;65
4.5.1;2.5.1. International Telecommunications Union (ITU);66
4.5.2;2.5.2. The Internet Society;66
4.5.2.1;2.5.2.1. Internet Architecture Board (IAB);66
4.5.2.2;2.5.2.2. Internet Engineering Steering Group (IESG);67
4.5.2.3;2.5.2.3. Internet Engineering Task Force (IETF);67
4.5.3;2.5.3. International Organization for Standardization (ISO);67
4.5.4;2.5.4. European Telecommunications Standards Institute (ETSI);67
4.5.5;2.5.5. American National Standard Institute (ANSI);67
4.5.6;2.5.6. Institute of Electrical and Electronic Engineers (IEEE);68
4.6;2.6. Summary;69
4.7;2.7. Review Questions;70
5;3. Network and User Data;72
5.1;3.1. The Network Data;73
5.2;3.2. The Physical Layer Data;74
5.2.1;3.2.1. Sequence of Events and Definitions;74
5.2.2;3.2.2. Modulation of data and signals;84
5.2.2.1;3.2.2.1. Baseband and Passband Modulations;85
5.2.3;3.2.3. Digital Encoding of Data;87
5.2.4;3.2.4. Non-Return to Zero (NRZ);88
5.2.5;3.2.5. Multilevel Encoding;89
5.2.5.1;3.2.5.1. Bipolar-AMI (Alternative Mark-Inversion) Coding;90
5.2.5.2;3.2.5.2. Multi-level 3 (MLT-3) Coding;90
5.2.6;3.2.6. Manchester Coding;90
5.2.7;3.2.7. General Characteristics of Bit Encoding;91
5.2.8;3.2.8. Zero-substitution and nB/NB Translation;92
5.3;3.3. Passband Modulation;93
5.3.1;3.3.1. The Carrier Signal;93
5.3.2;3.3.2. Analog Modulation;94
5.3.2.1;3.3.2.1. Amplitude Modulation (AM);95
5.3.2.2;3.3.2.2. Angle Modulation;96
5.4;3.4. Digital Modulation;97
5.4.1;3.4.1. Amplitude Shift Keying (ASK);97
5.4.2;3.4.2. Frequency Shift Keying (FSK);98
5.4.3;3.4.3. Phase Shift Keying (PSK);99
5.4.3.1;3.4.3.1. Quadrature Phase Shift Keying (QPSK);99
5.4.3.2;3.4.3.2. Signal Constellation;100
5.5;3.5. The User Data;101
5.5.1;3.5.1. Digital Transmission of Voice;101
5.5.2;3.5.2. The Sampling Theorem;102
5.5.3;3.5.3. Pulse Coded Modulation (PCM);102
5.5.4;3.5.4. Delta Modulation;108
5.6;3.6. Text and Numerical Data;110
5.6.1;3.6.1. ASCII (American National Standard Code for Information Interchange);111
5.6.1.1;3.6.1.1. ASCII and Other Standard Organizations;112
5.6.2;3.6.2. ISO 8859-1 (ISO Latin -1);112
5.6.3;3.6.3. UCS (Universal multiple-octet coded Character Set);113
5.7;3.7. Summary;115
5.8;3.8. Review Questions;116
6;4. The Physical Layer;118
6.1;4.1. Channel Impairments;119
6.1.1;4.1.1. Signal Attenuation;119
6.1.1.1;4.1.1.1. Attenuation and Propagation Loss;119
6.1.2;4.1.2. Delay Distortion;121
6.1.3;4.1.3. Noise;122
6.1.3.1;4.1.3.1. Thermal Noise;123
6.1.3.2;4.1.3.2. Crosstalk;123
6.1.3.3;4.1.3.3. Impulse Noise;123
6.1.4;4.1.4. Multipath;123
6.2;4.2. Transmission Media;124
6.3;4.3. Cables in data communications;125
6.3.1;4.3.1. Twisted Pair Copper Cables;125
6.3.2;4.3.2. Co-axial Cable;127
6.3.3;4.3.3. Optical Fiber Cable (OFC);128
6.4;4.4. The Wireless Media;128
6.4.1;4.4.1. Characteristics;129
6.4.2;4.4.2. Examples of Wireless Bands;129
6.5;4.5. Physical Layer Protocol Example: EIA-232-F;130
6.5.1;4.5.1. Mechanical Characteristics;131
6.5.2;4.5.2. Electrical Characteristics;133
6.5.3;4.5.3. Functional Characteristics;133
6.5.4;4.5.4. Procedural Characteristics;135
6.5.4.1;4.5.4.1. Call setup for full-duplex connection;135
6.5.4.2;4.5.4.2. Call setup for half-duplex connection;136
6.5.4.3;4.5.4.3. Loopback Testing;136
6.5.4.4;4.5.4.4. The NULL Modem;137
6.5.5;4.5.5. PHY for IEEE Wireless Local Area Network;138
6.5.6;4.5.6. WLAN Types;139
6.5.7;4.5.7. Frequency Hopping Spread Spectrum (FH-SS) for 2.4 GHz Specification;140
6.5.7.1;4.5.7.1. PLCP for frequency hopping;141
6.5.7.2;4.5.7.2. The PMD for Frequency Hopping Spread Spectrum;142
6.5.8;4.5.8. Direct Sequence Spread Spectrum (DS-SS) for 2.4 GHz Specification;143
6.5.9;4.5.9. Infrared PHY for IEEE WLAN;144
6.6;4.6. The Integrated Services Digital Network (ISDN) PHY;145
6.7;4.7. Review Questions;147
7;5. Data Link Control Layer Functions and Procedures;148
7.1;5.1. Data Link Layer Functions;149
7.1.1;5.1.1. Synchronization;149
7.1.2;5.1.2. Addressing Modes;149
7.1.3;5.1.3. Connection setup and termination;150
7.1.4;5.1.4. Error Control;150
7.1.5;5.1.5. Flow Control;150
7.1.6;5.1.6. Link Control and Testing;150
7.1.7;5.1.7. Multiplexing;151
7.2;5.2. Synchronization;151
7.2.1;5.2.1. Synchronous Transmission;151
7.2.1.1;5.2.1.1. Bit Stuffing;152
7.2.2;5.2.2. Asynchronous Transmission;153
7.3;5.3. Connection Setup and Termination;156
7.4;5.4. Addressing;157
7.5;5.5. Error Control;159
7.5.1;5.5.1. Parity bit;161
7.5.2;5.5.2. Block Error Check;163
7.5.3;5.5.3. The Cyclic Redundancy Check (CRC);163
7.5.3.1;5.5.3.1. Parity block generation;164
7.5.3.2;5.5.3.2. Error Detection Procedure;165
7.5.3.3;5.5.3.3. Polynomial representation of binary numbers;168
7.5.3.4;5.5.3.4. Implementation of CRC;170
7.5.3.5;5.5.3.5. How to Decide C(X);172
7.5.3.6;5.5.3.6. Error Detection Power of CRC;172
7.5.3.7;5.5.3.7. Error Recovery Mechanisms;173
7.6;5.6. Flow Control;173
7.6.1;5.6.1. Stop-and-Wait (SnW) Flow Control;173
7.6.2;5.6.2. The Sliding-windows (SW) Flow Control Mechanism;175
7.6.3;5.6.3. Link Utilization of Window Flow Control Mechanisms;179
7.6.4;5.6.4. Full-duplex Communications Using Window Flow Control;180
7.7;5.7. Flow Control Based Error Recovery Mechanisms;181
7.7.1;5.7.1. Stop-and-Wait ARQ;181
7.7.2;5.7.2. Go-Back-N ARQ;182
7.7.2.1;5.7.2.1. Full-duplex operation;182
7.7.2.2;5.7.2.2. Piggybacking;182
7.7.3;5.7.3. Selective Reject ARQ;183
7.7.4;5.7.4. Maximum Window Size;184
7.8;5.8. Link Control and Testing;185
7.9;5.9. Review Questions;186
8;6. Data Link Control Layer Protocol Examples;188
8.1;6.1. HDLC (High-level Data Link Control) Protocol;189
8.2;6.2. HDLC Frame Types;189
8.3;6.3. HDLC station types;193
8.3.1;6.3.1. Primary station;193
8.3.2;6.3.2. Secondary station;193
8.3.3;6.3.3. Combined stations;193
8.4;6.4. Operation modes;193
8.4.1;6.4.1. Normal Response Mode (NRM);193
8.4.2;6.4.2. Asynchronous Balanced Mode (ABM);193
8.4.3;6.4.3. Asynchronous Response Mode (ARM);194
8.4.4;6.4.4. Extended Modes;194
8.5;6.5. The HDLC Frame;194
8.5.1;6.5.1. Flag;194
8.5.2;6.5.2. Address Field;194
8.5.2.1;6.5.2.1. Extended address format;195
8.5.3;6.5.3. Frame Check Sequence (FCS);195
8.6;6.6. HDLC Protocol Operation;195
8.6.1;6.6.1. Selection of Timeout;196
8.6.2;6.6.2. Connection Setup and Termination;196
8.6.3;6.6.3. Data Exchange;197
8.6.3.1;6.6.3.1. Half-duplex Connection;198
8.6.3.2;6.6.3.2. Use of RR and RNR for Busy Condition Notice and Recovery;201
8.6.3.3;6.6.3.3. Use of REJ and SREJ;201
8.7;6.7. Asynchronous Transfer Mode (ATM) Protocol;202
8.7.1;6.7.1. The ATM Cell;203
8.7.1.1;6.7.1.1. Generic Flow Control (GFC);203
8.7.1.2;6.7.1.2. Virtual Path/Channel Identifiers (VPI/VCI);204
8.7.1.3;6.7.1.3. Control Bits;206
8.7.1.4;6.7.1.4. Header Error Control (HEC);207
8.8;6.8. ATM Protocol Procedures;208
8.8.1;6.8.1. Virtual circuit and the frame relay protocol;208
8.8.2;6.8.2. Error Control;209
8.9;6.9. Medium Access Control (MAC) Layer for IEEE Wireless LANs;210
8.9.1;6.9.1. Random Access in LANs;211
8.9.2;6.9.2. Collision Avoidance;212
8.9.3;6.9.3. The Distributed Coordination Function (DCF);213
8.9.3.1;6.9.3.1. Interframe Spacing (IFS);214
8.9.4;6.9.4. MAC Frame Structure;214
8.9.5;6.9.5. MAC Frame Types;215
8.10;6.10. Review Questions;217
9;7. Multiplexing and Carrier Systems;218
9.1;7.1. Analog and Digital Transmissions;219
9.1.1;7.1.1. Analog and Digital Multiplexing;219
9.1.2;7.1.2. Frequency Division Multiplexing (FDM);220
9.1.3;7.1.3. Frequency Division Duplexing (FDD);221
9.1.4;7.1.4. Time Division Multiplexing (TDM);222
9.1.5;7.1.5. Synchronous TDM;222
9.1.6;7.1.6. Statistical TDM;223
9.1.7;7.1.7. Statistical Versus Synchronous TDM;225
9.1.8;7.1.8. The TDM Switch;226
9.1.8.1;7.1.8.1. Framing;227
9.1.8.2;7.1.8.2. Pulse stuffing;228
9.2;7.2. Digital Carrier Systems;228
9.3;7.3. The DS-1 Carrier System;229
9.3.1;7.3.1. Total Bit Rate;230
9.3.2;7.3.2. Signaling Information;230
9.3.3;7.3.3. Problems with T-1/E-1 Systems;231
9.4;7.4. Synchronous Optical Network/ Synchronous Digital Hierarchy;232
9.5;7.5. Digital Subscriber’s Line (DSL);234
9.5.1;7.5.1.8.1. Integration With Telephone;235
9.6;7.6. Multiplexing at higher layers;235
9.6.1;7.6.1. Multiple Protocols Per Layer With Connection-oriented Mode;236
9.6.2;7.6.2. Multiple Connections Per Protocol;237
9.7;7.7. Review Questions;239
10;8. The Network and Higher Layer Functions;240
10.1;8.1. The Network Layer;241
10.2;8.2. Typical Functions of Network layer;242
10.2.1;8.2.1. Connectionless Network Layers;242
10.2.2;8.2.2. Connection-oriented Mode;246
10.3;8.3. The End-to-end Layers;247
10.4;8.4. X.25 Packet Layer Protocol;249
10.4.1;8.4.1. X.25 Packet Types;250
10.5;8.5. Review Questions;253
11;9. Performance Models for Data Networks;254
11.1;9.1. The Network Performance;255
11.2;9.2. Performance of the Physical Layer Protocols;256
11.2.1;9.2.1. Performance Improvement at PHY;257
11.2.1.1;9.2.1.1. Channel Errors;257
11.2.1.2;9.2.1.2. Receiver Accuracy;258
11.3;9.3. Data Link Layer Performance;259
11.3.1;9.3.1. Flow Control Procedures;260
11.3.2;9.3.2. Error Control Procedures;263
11.3.2.1;9.3.2.1. Performance Models for FEC and BEC;263
11.4;9.4. Performance of the MAC Sublayer;265
11.5;9.5. Performance of the network and higher layers;266
11.5.1;9.5.1. Connectionless and Connection-oriented Protocols;267
11.5.2;9.5.2. QoS Differentiation in Connectionless Protocols;269
11.5.2.1;9.5.2.1. Priority Queueing;269
11.5.2.2;9.5.2.2. Fair Queueing;270
11.5.2.3;9.5.2.3. Custom Queueing;270
11.5.3;9.5.3. Performance of End-to-end Protocols;271
11.6;9.6. System Simulation for Performance Prediction;272
11.6.1;9.6.1. What is Simulation?;272
11.6.1.1;9.6.1.1. What is a Random Number?;273
11.6.1.2;9.6.1.2. The Uniform Random Variable;273
11.6.1.3;9.6.1.3. What is a Pseudorandom Number?;274
11.6.2;9.6.2. Designing a Simulation Program Versus Using a Package;274
11.7;9.7. Performance of Wireless and Mobile Networks;274
11.7.1;9.7.1. The Wireless Network Channel;275
11.7.1.1;9.7.1.1. Propagation Loss;275
11.7.1.2;9.7.1.2. Interference;275
11.7.1.3;9.7.1.3. Frequency Selectiveness;276
11.7.1.4;9.7.1.4. Time Selectiveness;277
11.7.1.5;9.7.1.5. Multipath;278
11.7.1.6;9.7.1.6. Diversity;278
11.7.2;9.7.2. Resource Management in Wireless Networks;279
11.7.3;9.7.3. Mobility Management in Mobile Networks;281
11.7.3.1;9.7.3.1. Handoff;282
11.7.3.2;9.7.3.2. Registration;282
11.8;9.8. Review Questions;283
12;References;284
13;Index;290
14;More eBooks at www.ciando.com;0


7. Multiplexing and Carrier Systems (p.202)

In earlier chapters, we learnt that the channel bandwidth must be greater than or equal to the signal bandwidth for a successful transmission of a data signal. The channel bandwidth sometimes limits the ability of the user equipment to transmit information. Historically, there have been three ways used to achieve higher data rates. One simple way is to use channels with higher bandwidths. The second mechanism is to design modulation and coding mechanisms to use the available bandwidth more efficiently. The bandwidth efficient modulation and coding schemes result in higher data rates per unit bandwidth, thus increasing the data rates achievable in a channel for a given channel bandwidth. This technique has resulted in gradual increase in the data rates of the telephone line MODEM.

The third important factor contributing to the increased data rates is the improvements in cable manufacturing. This has helped in many ways and can be considered as a part of the first mechanism. Not only higher bandwidth cables are available these days, but also there are ways to allow higher data rates on the already existing cable types. This is possible due to the developments in manufacturing cables with fewer impurities and ones using special circuitry to undo many channel impairments. The cable technology has influenced telecommunications to a point that even new protocols have been introduced with reduced processing. An example of such protocols is the frame relay technology that minimizes processing at layer 2 in order to achieve higher end-to-end throughputs.

Most of the long haul telecommunications transmission systems, however, use channels with much higher bandwidths than a single user signal would need. Many users share each of these high-speed channels. Multiplexing is the mechanism used for channel sharing. In this Chapter, we will look at the difference between two types of transmissions once more, the digital and analog transmissions. We will then define multiplexing schemes that can be used with either type of transmission. In the end, we will look into digital multiplexing in greater detail and discuss carrier systems using digital multiplexing. A carrier system is the term used to describe the transmission systems typically used for long-haul communications for private and public networks. These systems provide a set of standard bandwidths or data rates from which a user can choose. The equipment is designed according to the carrier system it will use, conforming to the signal and transmission formats.

Multiplexing is mostly discussed with reference to the physical layer of the OSI-RM. The fact is that all layers make use of multiplexing. It is one of the functions that can be provided at any layer to open more than one simultaneous connections. Our main focus is on multiplexing at the physical layer, but we will also include a section on multiplexing at other layers.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.