E-Book, Englisch, 694 Seiten
Reihe: Food Engineering Series
Aguilera / Barbosa-Canovas / Simpson Food Engineering Interfaces
1. Auflage 2010
ISBN: 978-1-4419-7475-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 694 Seiten
Reihe: Food Engineering Series
ISBN: 978-1-4419-7475-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
The International Conference on Food Engineering is held every four years and draws global participation. ICEF 10 will be held in April 2008 in Chile with the theme of food engineering at interfaces. This will not be a typical proceedings with uneven contributions. Papers will be solicited from each plenary speaker plus two or three invited speakers from each topic and the goal is to publish a book that conveys the interdisciplinary spirit of the meeting as well as covers the topics in depth, creating a strong reference work. The idea is to explore how food engineers have to be prepared in years ahead not only to perform in their normal activities but also to engage in new challenges and opportunities that will make the profession more attractive, responsive, and able to create a larger impact. These challenges and opportunities are within the profession and at interfaces with other areas. A major role of engineers is to incorporate new knowledge into the profession and respond to practical needs. The goal is to explore how food engineers are integrating developments in the basic sciences of physics and chemistry, nutrition, informatics, material sciences, genomics (and other -omics), quality and safety, consumer behavior and gastronomy. Interfaces with the environment, the business sector, regulations and export markets are also important to consider.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Acknowledgments;8
3;Contents;10
4;Contributors;14
5;Part I: Selected Topics in Food Engineering;20
5.1;Chapter 1: The Beginning, Current, and Future of Food Engineering: A Perspective;21
5.1.1;1.1 Introduction;21
5.1.2;1.2 Scope of Food Engineering;22
5.1.3;1.3 Definitions of Food Engineering;22
5.1.4;1.4 Origins of Food Engineering;23
5.1.5;1.5 Evolution of Food Engineering;24
5.1.6;1.6 Evolution in Food Engineering Research;27
5.1.6.1;1.6.1 Kinetic Models;27
5.1.6.2;1.6.2 Transport Phenomenon;28
5.1.6.3;1.6.3 Process Design;28
5.1.7;1.7 Contributions of Food Engineering Research;29
5.1.7.1;1.7.1 Safe and Wholesome Foods;29
5.1.7.2;1.7.2 Affordable Food Supply;29
5.1.7.3;1.7.3 Convenient Food Products;30
5.1.7.4;1.7.4 Product Quality Improvements;32
5.1.7.5;1.7.5 Innovative Food Products;33
5.1.8;1.8 The Future of Food Engineering;34
5.1.9;1.9 Summary;35
5.1.10;References;35
5.2;Chapter 2: Advances in 3D Numerical Simulation of Viscous and Viscoelastic Mixing Flows;37
5.2.1;2.1 Introduction;37
5.2.2;2.2 Theoretical Measures of Mixing;38
5.2.3;2.3 Governing Equations for Calculation of Flow;40
5.2.4;2.4 Numerical Methods for Simulation of Mixing Flows;41
5.2.5;2.5 3D Numerical Simulation of Model Mixing Geometries;44
5.2.5.1;2.5.1 Stirred Tank Reactors/Batch Mixers;44
5.2.5.2;2.5.2 Dough Mixers and Kneaders;48
5.2.5.3;2.5.3 Continuous Mixers and Extruders;51
5.2.6;2.6 Conclusions;60
5.2.7;References;60
5.3;Chapter 3: CFD: An Innovative and Effective Design Tool for the Food Industry;63
5.3.1;3.1 Introduction;63
5.3.2;3.2 Modeling Food Processes: Solving Governing Partial Differential Equations;64
5.3.2.1;3.2.1 Conservation of Mass;66
5.3.2.2;3.2.2 Conservation of Momentum;66
5.3.2.3;3.2.3 Conservation of Energy;67
5.3.3;3.3 Modeling Properties of Fluids;68
5.3.3.1;3.3.1 Density;68
5.3.3.2;3.3.2 Viscosity;69
5.3.4;3.4 Modeling Particular Flow Regimes;69
5.3.4.1;3.4.1 Turbulent Flows;69
5.3.4.1.1;3.4.1.1 Large Eddy Simulations;70
5.3.4.1.2;3.4.1.2 Reynolds Averaged Navier-Stokes;70
5.3.4.1.2.1;Reynolds Stress Models;70
5.3.4.1.2.2;Turbulent Viscosity Models;71
5.3.4.1.2.3;The Standard k-epsi Model;71
5.3.4.1.2.4;The RNG k-epsi Model;71
5.3.4.1.2.5;The Realizable k-epsi Model;72
5.3.4.1.2.6;The k-omega Model;72
5.3.4.2;3.4.2 Flows Containing Different Phases;72
5.3.4.2.1;3.4.2.1 Volume of Fluid Model;73
5.3.4.2.2;3.4.2.2 Eulerian-Eulerian Model;73
5.3.4.2.3;3.4.2.3 Lagrangian-Eulerian Model;74
5.3.4.3;3.4.3 Modeling Flows through Porous Media;74
5.3.5;3.5 Numerical Methods Used by CFD Code Developers;75
5.3.6;3.6 Applications of CFD in Food Industry;76
5.3.6.1;3.6.1 Sterilization;76
5.3.6.1.1;3.6.1.1 Canned Foods;76
5.3.6.1.2;3.6.1.2 Pouched Foods;77
5.3.6.2;3.6.2 Pasteurization;77
5.3.6.3;3.6.3 Aseptic Processing;78
5.3.6.3.1;3.6.3.1 Plate Heat Exchangers for Milk Processing;78
5.3.6.3.2;3.6.3.2 Plate Heat Exchangers for Yoghurt Processing;78
5.3.6.4;3.6.4 Drying;78
5.3.6.4.1;3.6.4.1 Fluidized Beds;78
5.3.6.4.2;3.6.4.2 Spray Drying;79
5.3.6.4.3;3.6.4.3 Forced Convection Drying;79
5.3.6.5;3.6.5 Cooking;80
5.3.6.5.1;3.6.5.1 Natural Convection Ovens;80
5.3.6.5.2;3.6.5.2 Forced Convection Ovens;80
5.3.6.5.3;3.6.5.3 Baking Ovens;81
5.3.7;3.7 Challenges in Use of CFD in the Food Industry;81
5.3.7.1;3.7.1 Improving the Efficiency of the Solution Process;81
5.3.7.2;3.7.2 CFD to Control Food Processes;81
5.3.7.3;3.7.3 Turbulence;82
5.3.7.4;3.7.4 Need for Sensitivity Analysis;82
5.3.8;3.8 Conclusions;82
5.3.9;3.9 Nomenclature;83
5.3.9.1;3.9.1 Greek Letters;83
5.3.9.2;3.9.2 Subscripts;84
5.3.10;References;84
5.4;Chapter 4: Incorporation of Fibers in Foods: A Food Engineering Challenge;87
5.4.1;4.1 Introduction;87
5.4.1.1;4.1.1 Dietary Fiber;88
5.4.1.2;4.1.2 Importance of Dietary Fiber;88
5.4.1.3;4.1.3 Sources of Fiber;88
5.4.1.4;4.1.4 Fortification of Foods with Fiber;89
5.4.2;4.2 Processing and Chemical Evaluation of Fiber-Enriched Foods and Corn Fibers;89
5.4.2.1;4.2.1 Extrusion Processing;89
5.4.2.2;4.2.2 Challenges in Corn Fiber Processing;91
5.4.2.3;4.2.3 Chemistry of Corn Fiber;91
5.4.2.4;4.2.4 Strategies for Modification of Corn Fiber;94
5.4.2.4.1;4.2.4.1 Chemical Modification;94
5.4.2.4.2;4.2.4.2 Physical Modification;94
5.4.2.4.3;4.2.4.3 Enzymatic Modification;94
5.4.3;4.3 Techniques to Assess Fiber Chemistry and Fiber-Enriched Foods;95
5.4.3.1;4.3.1 Rheological Characterization;95
5.4.3.1.1;4.3.1.1 Solution Rheology;95
5.4.3.1.2;4.3.1.2 Capillary Rheometry;95
5.4.3.1.3;4.3.1.3 Lubricated Squeezing Flow;96
5.4.3.2;4.3.2 Structural Characterization;97
5.4.3.2.1;4.3.2.1 Chemical Analysis;97
5.4.3.2.1.1;Monosaccharide Analysis;98
5.4.3.2.1.2;Protein Estimation;98
5.4.3.2.1.3;Phenolic Acid Analysis;98
5.4.3.2.1.4;Lipid Analysis;99
5.4.3.2.2;4.3.2.2 Spectroscopy Techniques;99
5.4.3.2.3;4.3.2.3 Thermal Analysis;99
5.4.3.2.4;4.3.2.4 High-Pressure Size Exclusion Chromatography Techniques;100
5.4.3.2.5;4.3.2.5 Light Scattering;100
5.4.3.2.5.1;HPSEC-MALS;100
5.4.3.2.5.2;Conformation Plots and Branching Analysis;101
5.4.3.2.6;4.3.2.6 Fermentation Profiling;101
5.4.4;4.4 Structure and Functionality of Alkali-Treated Corn Arabinoxylans;102
5.4.4.1;4.4.1 Description of Chemical Treatment;102
5.4.4.2;4.4.2 Rheological Properties and Extrusion Expansion of Modified Fibers Mixed with Cornmeal;102
5.4.4.2.1;4.4.2.1 Extrusion Trials;102
5.4.4.2.2;4.4.2.2 Capillary Rheometry;103
5.4.4.2.3;4.4.2.3 Extensional Rheology;104
5.4.4.2.4;4.4.2.4 Effect of Rheology on the Expansion Process;105
5.4.4.2.5;4.4.2.5 Possible Effects of Structure and Composition of Fibers on Rheology;106
5.4.4.3;4.4.3 Effect of Branching on Rheology of Alkali-Soluble Corn Arabinoxylans;107
5.4.4.3.1;4.4.3.1 Melt Shear Rheology Using Capillary Rheometry;108
5.4.4.3.2;4.4.3.2 Extensional Rheology Using Lubricated Squeezing Flow;109
5.4.4.3.3;4.4.3.3 Solution Shear Rheology Using Rotational Rheometer;110
5.4.4.3.4;4.4.3.4 Branching Analysis Using HPSEC-MALS;110
5.4.4.3.5;4.4.3.5 Possible Implications in Extrusion;111
5.4.5;4.5 Conclusion;112
5.4.6;References;112
5.5;Chapter 5: Gastric Digestion of Foods: Mathematical Modeling of Flow Field in a Human Stomach;117
5.5.1;5.1 Introduction;117
5.5.2;5.2 Fluid Flow in a Human Stomach;117
5.5.3;5.3 Procedures in Modeling;120
5.5.3.1;5.3.1 Stomach Geometry;120
5.5.3.2;5.3.2 Deformation of Stomach Using Dynamic Meshing;121
5.5.4;5.4 Results and Discussions;123
5.5.4.1;5.4.1 Validation of a Modeled Flow Field inside a Circular Tube;123
5.5.4.2;5.4.2 Pressure Validation;124
5.5.4.3;5.4.3 Flow Field Inside the Stomach;125
5.5.4.4;5.4.4 The Effect of Viscosity of Gastric Fluid;127
5.5.4.5;5.4.5 The Effect of Density of Gastric Fluid;129
5.5.4.6;5.4.6 The Effect of ACW Speed;129
5.5.4.7;5.4.7 The Effect of Depth of Contraction;131
5.5.5;5.5 Conclusions;133
5.5.6;5.6 Suggestions for Future Work;133
5.5.7;References;134
5.6;Chapter 6: State of the Art in Immobilized/Encapsulated Cell Technology in Fermentation Processes;136
5.6.1;6.1 Introduction;136
5.6.2;6.2 Carrier Selection and Design;138
5.6.2.1;6.2.1 Immobilization on Solid Carrier Surfaces;138
5.6.2.2;6.2.2 Entrapment Within Porous Matrix;142
5.6.2.3;6.2.3 Cell Aggregation;144
5.6.2.4;6.2.4 Containment Behind a Membrane Barrier;144
5.6.3;6.3 Bioreactor Design;144
5.6.4;6.4 Impact of Immobilization on Flavor Formation;149
5.6.4.1;6.4.1 Influence of ICT on Higher Alcohol Production;149
5.6.4.2;6.4.2 Ester Production in ICT Systems;151
5.6.4.3;6.4.3 Carbonyl Compounds Production in ICT Systems;152
5.6.4.4;6.4.4 Secondary Fermentation Using ICT;154
5.6.4.5;6.4.5 Malolactic Fermentation in ICT Systems;155
5.6.5;6.5 Conclusion;156
5.6.6;References;156
5.7;Chapter 7: Multifactorial Assessment of Microbial Risks in Foods: Merging Engineering, Science, and Social Dimensions;164
5.7.1;7.1 Introduction and Context;164
5.7.2;7.2 Risk Management Frameworks for Food Safety;165
5.7.3;7.3 Multifactorial Risk Prioritization Framework;166
5.7.3.1;7.3.1 Defining Risk Factors;168
5.7.3.1.1;7.3.1.1 Public Health Assessment;168
5.7.3.1.2;7.3.1.2 Market-Level Assessment;169
5.7.3.1.3;7.3.1.3 Consumer Assessment;170
5.7.3.1.4;7.3.1.4 Social Factor Assessment;173
5.7.3.2;7.3.2 Information Cards;173
5.7.3.3;7.3.3 Multifactorial Risk Prioritization;175
5.7.4;7.4 Food Engineering at Risk Management/Risk Assessment Interface: Challenges and Implications for Training;178
5.7.5;7.5 Concluding Statements;180
5.7.6;References;180
5.8;Chapter 8: Development of Eco-efficiency Indicators to Assess the Environmental Performance of the Canadian Food and Beverage Industry;182
5.8.1;8.1 Introduction;182
5.8.2;8.2 Overview of the Canadian FBI;182
5.8.3;8.3 Energy Consumption and Greenhouse Gas Emissions;185
5.8.3.1;8.3.1 The Indicators: Energy Consumption Intensity and Greenhouse Gas Emission Intensity;188
5.8.3.2;8.3.2 Results and Interpretation: ECI and GHGEI;192
5.8.3.2.1;8.3.2.1 National Results and Interpretation: ECI and GHGEI;193
5.8.3.2.1.1;ECI, Sectoral Features Regardless of Size of Establishments;193
5.8.3.2.1.2;ECI, Sectoral Features with Regard to Establishment Size;195
5.8.3.2.1.3;ECI, Sub-sectoral Features Regardless of the Size of Establishments;196
5.8.3.2.1.4;Greenhouse Gas Emission Intensity;196
5.8.3.2.2;8.3.2.2 Provincial Results and Interpretation: ECI and GHGEI;199
5.8.3.2.2.1;Energy Consumption Intensity;200
5.8.3.2.2.2;Greenhouse Gas Emission Intensity;202
5.8.3.2.2.3;Limitations: ECI and GHGEI;204
5.8.3.3;8.3.3 Response Options: ECI and GHGEI;204
5.8.4;8.4 Water Intake and Water Discharge;205
5.8.4.1;8.4.1 The Indicators: Water Intake Intensity and Water Discharge Intensity;207
5.8.4.2;8.4.2 Results and Interpretation: WII and WDI;210
5.8.4.2.1;8.4.2.1 National Results and Interpretation: WII and WDI;210
5.8.4.2.2;8.4.2.2 Provincial Results and Interpretation: WII and WDI;213
5.8.4.3;8.4.3 Response Options: WII and WDI;215
5.8.5;8.5 Packaging Use;216
5.8.5.1;8.5.1 The Indicator: PUI;220
5.8.5.2;8.5.2 Results and Interpretation: PUI;221
5.8.5.2.1;8.5.2.1 National Results and Interpretation: PUI;221
5.8.5.2.2;8.5.2.2 Provincial Results and Interpretation;224
5.8.5.3;8.5.3 Limitations: PUI;227
5.8.5.4;8.5.4 Response Options: PUI;227
5.8.6;8.6 Conclusions and Recommendations;228
5.8.7;References;231
5.9;Chapter 9: Food Process Economics;236
5.9.1;9.1 Importance of Economics in Food Processing;236
5.9.2;9.2 Process Engineering Economics;237
5.9.2.1;9.2.1 Capital Cost;237
5.9.2.2;9.2.2 Operating Cost;237
5.9.2.2.1;9.2.2.1 Raw Food Materials and Packaging Materials;237
5.9.2.2.2;9.2.2.2 Labor;238
5.9.2.2.3;9.2.2.3 Utilities;239
5.9.2.3;9.2.3 Process Profitability;239
5.9.2.3.1;9.2.3.1 Capital Cost;239
5.9.2.3.2;9.2.3.2 Manufacturing Cost;242
5.9.2.3.3;9.2.3.3 Discounted Cash Flow;242
5.9.2.3.4;9.2.3.4 Measures of Plant Profitability;243
5.9.3;9.3 Food Processing Plants;244
5.9.3.1;9.3.1 Food Preservation Plants;244
5.9.3.2;9.3.2 Food Manufacturing Plants;247
5.9.3.3;9.3.3 Food Ingredients Plants;252
5.9.4;9.4 Conclusions;252
5.9.5;References;253
5.10;Chapter 10: Systemic Approach to Curriculum Design and Development;254
5.10.1;10.1 Introduction;254
5.10.2;10.2 Systems Theory and Thinking;255
5.10.2.1;10.2.1 Designing Curriculum Using Systems Thinking;256
5.10.2.2;10.2.2 Designing Curriculum for Undergraduate Courses;257
5.10.2.3;10.2.3 Designing Curriculum for a Master´s Degree Program;258
5.10.2.4;10.2.4 Designing Curriculum for a Doctoral Program;259
5.10.3;10.3 Conclusion;259
5.10.4;References;260
6;Part II: Advances in Food Process Engineering;261
6.1;Chapter 11: Innovations in Thermal Treatment of Food;262
6.1.1;11.1 Introduction;262
6.1.2;11.2 Microbial Kinetics for Process Calculations;263
6.1.3;11.3 Retort Equipment Systems in Cookroom Operations;266
6.1.4;11.4 Flexible Retortable Packages;268
6.1.5;11.5 Market Implications;271
6.1.6;References;273
6.2;Chapter 12: Optimization of Food Thermal Processing: Sterilization Stage and Plant Production Scheduling;275
6.2.1;12.1 Introduction;275
6.2.1.1;12.1.1 Thermal Process Calculation;276
6.2.1.2;12.1.2 Optimal Scheduling for Food Canneries;277
6.2.2;12.2 Methodology;278
6.2.2.1;12.2.1 Sterilization Stage Optimization;278
6.2.2.1.1;12.2.1.1 Penalty Functions;279
6.2.2.1.2;12.2.1.2 Process Optimization and Computer Simulation;279
6.2.2.1.3;12.2.1.3 Adaptive Random Search Method;280
6.2.2.2;12.2.2 Canning Plant Scheduling;284
6.2.2.2.1;12.2.2.1 Problem Definition;287
6.2.2.2.2;12.2.2.2 Mathematical Model Description;287
6.2.3;12.3 Results and Discussion;289
6.2.3.1;12.3.1 Thermal Process Calculation;289
6.2.3.1.1;12.3.1.1 Maximizing Quality Retention Problem;289
6.2.3.1.2;12.3.1.2 Minimization Process Time Problem;289
6.2.3.1.3;12.3.1.3 Canning Plant Optimization;291
6.2.4;12.4 Conclusions;295
6.2.5;References;296
6.3;Chapter 13: Recent Advances in Emerging Nonthermal Technologies;299
6.3.1;13.1 Introduction;299
6.3.1.1;13.1.1 Consumer Trends;300
6.3.2;13.2 Emerging Technologies;301
6.3.2.1;13.2.1 Nonthermal Technologies;301
6.3.3;13.3 High Hydrostatic Pressure;304
6.3.3.1;13.3.1 Effects on Microorganisms, Enzymes and Food Components;304
6.3.3.2;13.3.2 Advances in High Pressure Processing;308
6.3.3.3;13.3.3 Pressure Assisted Thermal Sterilization (PATS);309
6.3.3.4;13.3.4 Future of High Hydrostatic Pressure;311
6.3.4;13.4 Pulsed Electric Fields;311
6.3.4.1;13.4.1 Effects on Microorganisms, Enzymes and Food Components;312
6.3.4.2;13.4.2 Recent Advances in PEF Processing;313
6.3.4.3;13.4.3 PEF Extraction;314
6.3.4.4;13.4.4 Future of Pulsed Electric Fields;315
6.3.5;13.5 Ultrasound;316
6.3.5.1;13.5.1 Extraction;316
6.3.5.2;13.5.2 Recent Advances in Ultrasound;317
6.3.6;13.6 Cold Plasma;318
6.3.6.1;13.6.1 Processing Conditions;319
6.3.6.2;13.6.2 Effect on Microorganisms;320
6.3.7;13.7 Dense Phase Carbon Dioxide;320
6.3.8;13.8 Other Novel Nonthermal Technologies for Food Processing;322
6.3.8.1;13.8.1 Future of Other Novel Technologies;323
6.3.9;13.9 Modeling of Microbial Inactivation in Nonthermal Technologies;324
6.3.10;13.10 Final Remarks;331
6.3.11;References;332
6.4;Chapter 14: High-Pressure-Induced Effects on Bacterial Spores, Vegetative Microorganisms, and Enzymes;338
6.4.1;14.1 Introduction;338
6.4.2;14.2 High Pressure Thermal Sterilization;339
6.4.2.1;14.2.1 Development and Application of Temperature Controlled Spore Inactivation;340
6.4.2.2;14.2.2 Industrial Relevance and Applications;344
6.4.3;14.3 HP Effects on Vegetative Microorganisms and Enzymes;346
6.4.4;14.4 Outlook, Needs, and Challenges;349
6.4.5;References;350
6.5;Chapter 15: High Pressure Sterilization of Foods;354
6.5.1;15.1 Introduction;354
6.5.2;15.2 High Pressure Pasteurization;355
6.5.3;15.3 High Pressure Sterilization;356
6.5.4;15.4 Compression Heating;358
6.5.5;15.5 Spore Inactivation Studies;359
6.5.5.1;15.5.1 Clostridum botulinum Studies;361
6.5.6;References;362
6.6;Chapter 16: Bioseparation of Nutraceuticals Using Supercritical Carbon Dioxide;365
6.6.1;16.1 Introduction;365
6.6.2;16.2 Fundamentals;366
6.6.2.1;16.2.1 Physical and Transport Properties;367
6.6.2.2;16.2.2 Solubility Behavior;371
6.6.2.2.1;16.2.2.1 Factors Affecting Solubility in Supercritical Fluids;371
6.6.2.2.2;16.2.2.2 Solubility Determination and Correlation;373
6.6.3;16.3 Separation Processes;377
6.6.3.1;16.3.1 Extraction;377
6.6.3.1.1;16.3.1.1 Lipid-Based Nutraceuticals;379
6.6.3.1.2;16.3.1.2 Phytochemicals;385
6.6.3.2;16.3.2 Fractionation;386
6.6.3.2.1;16.3.2.1 Lipid-Based Nutraceuticals;387
6.6.3.2.2;16.3.2.2 Phytochemicals;393
6.6.4;16.4 Commercialization and Future Outlook;394
6.6.5;References;396
6.7;Chapter 17: Mass Transfer and Equilibrium Parameters on High-Pressure CO2 Extraction of Plant Essential Oils;405
6.7.1;17.1 Introduction;405
6.7.1.1;17.1.1 Chemistry and Localization of Essential Oils;406
6.7.1.2;17.1.2 Organization of Chapter;408
6.7.2;17.2 Mass Transfer Models;410
6.7.2.1;17.2.1 Diffusion Model;410
6.7.2.2;17.2.2 Limitations of the Diffusion Model;417
6.7.2.3;17.2.3 Alternative Internal Mass Transfer Mechanisms;418
6.7.3;17.3 Kinetic Parameters of CO2 Extraction of Essential Oils;423
6.7.3.1;17.3.1 Axial Dispersion Coefficient;426
6.7.3.2;17.3.2 External Mass Transfer Coefficient;436
6.7.3.3;17.3.3 Effective Diffusivity in the Solid Matrix;440
6.7.4;17.4 Phase Equilibrium Effects in Essential Oil Extraction, Fractionation, and Recovery;451
6.7.4.1;17.4.1 Solubility in CO2 of Essential Oil Components in Model (Binary) Systems;451
6.7.4.2;17.4.2 Essential Oil Fractionation in Model (Ternary) Systems and Complex Mixtures;460
6.7.4.3;17.4.3 Thermodynamic and Operational Solubility in the CO2 Extraction of Essential Oils;463
6.7.4.4;17.4.4 Operational Solubility and Sorption Phenomena in the CO2 Extraction of Essential Oils;465
6.7.5;17.5 Concluding Remarks;472
6.7.6;References;474
7;Part III: Water Management in Food;483
7.1;Chapter 18: Glass Transitions: Opportunities and Challenges;484
7.1.1;18.1 Introduction;484
7.1.1.1;18.1.1 Confectionary;485
7.1.1.2;18.1.2 Frozen Foods;485
7.1.1.3;18.1.3 Cereal Foods;486
7.1.1.4;18.1.4 Food Powders and Dehydrated Foods;487
7.1.2;18.2 Glass Transition: Opportunities;488
7.1.2.1;18.2.1 Freezing and Freeze-Drying;488
7.1.2.2;18.2.2 Spray Drying;490
7.1.2.3;18.2.3 Extrusion;492
7.1.2.4;18.2.4 Encapsulation;492
7.1.3;18.3 Glass Transition: Challenges;493
7.1.4;18.4 Conclusion;498
7.1.5;References;498
7.2;Chapter 19: Caking of Water-Soluble Amorphous and Crystalline Food Powders;502
7.2.1;19.1 Introduction;502
7.2.2;19.2 Scientific Background;503
7.2.2.1;19.2.1 Supra-molecular Structure and Material Properties;503
7.2.2.2;19.2.2 Adhesion Mechanisms;504
7.2.2.3;19.2.3 Caking Processes;508
7.2.2.4;19.2.4 Powder Flowability and Stress States;509
7.2.3;19.3 Materials and Methods;512
7.2.3.1;19.3.1 Materials;512
7.2.3.2;19.3.2 Method for Measuring Caking;513
7.2.4;19.4 Results and Discussion;514
7.2.4.1;19.4.1 Caking of Amorphous Water-Soluble Powders;514
7.2.4.2;19.4.2 Caking of Crystalline Powders;519
7.2.4.3;19.4.3 Caking of Powder Mixes;519
7.2.4.4;19.4.4 Influence of Re-crystallization of Amorphous Substances on Caking;523
7.2.5;19.5 Summary and Conclusions;524
7.2.6;References;525
7.3;Chapter 20: Effective Drying Zones and Nonlinear Dynamics in a Laboratory Spray Dryer;526
7.3.1;20.1 Introduction;526
7.3.2;20.2 Materials and Methods;528
7.3.2.1;20.2.1 Testing Material;528
7.3.2.2;20.2.2 Spray Dryer;528
7.3.2.3;20.2.3 Moisture Content and Sampling of Material;529
7.3.2.4;20.2.4 Evaluation of Air and Product Temperature;530
7.3.2.5;20.2.5 Mean Particle Diameter During Drying;530
7.3.2.6;20.2.6 Measurement of the Mass Flow Rate;530
7.3.2.7;20.2.7 Effective Drying Height;530
7.3.2.8;20.2.8 Computational Fluid Dynamics Simulation;533
7.3.2.9;20.2.9 Simulation of Airflow Profiles;533
7.3.2.10;20.2.10 Nonlinear Dynamics of the System;533
7.3.3;20.3 Results and Discussion;534
7.3.4;20.4 Conclusions;539
7.3.5;20.5 Symbols;543
7.3.5.1;20.5.1 Greek Letters;543
7.3.5.2;20.5.2 Subscripts;544
7.3.6;References;544
7.4;Chapter 21: Rehydration Modeling of Food Particulates Utilizing Principles of Water Transport in Porous Media;546
7.4.1;21.1 Introduction;546
7.4.2;21.2 Mathematical Modeling;547
7.4.2.1;21.2.1 Empirical and Semiempirical Models;547
7.4.2.2;21.2.2 The Diffusion Model;547
7.4.3;21.3 Paradigm Shift: Capillary Flow in Porous Media;548
7.4.4;21.4 Flow in Unsaturated Porous Media;549
7.4.4.1;21.4.1 Capillarity and Tension Head;549
7.4.4.2;21.4.2 Water Retention Curve;550
7.4.4.3;21.4.3 Richards Equation, Boundary, and Initial Conditions;552
7.4.4.4;21.4.4 Developing the Theory of Flow in Porous Media;553
7.4.4.5;21.4.5 Rehydration of Foods Using Porous Media: Additional Considerations;558
7.4.5;21.5 New Approaches and Other Advances;559
7.4.6;21.6 Research Needs;560
7.4.7;21.7 Conclusions;560
7.4.8;References;561
7.5;Chapter 22: Responses of Living Organisms to Freezing and Drying: Potential Applications in Food Technology;564
7.5.1;22.1 Introduction;564
7.5.2;22.2 Desiccation Strategies: Glass Formation and Solute-Protecting Interactions in Anhydrobiotes;565
7.5.3;22.3 Survival in Frozen Environments: Managing the Kinetics of Ice Nucleation or Ice Crystal Growth;566
7.5.4;22.4 Some Theoretical Considerations;567
7.5.5;22.5 Involved Mechanisms;572
7.5.5.1;22.5.1 Avoidance of Solids Crystallization in Supercooled State;572
7.5.5.2;22.5.2 Increase of Extracellular Ice Nucleation Rate: INAs;573
7.5.5.3;22.5.3 Inhibition of Ice Crystal Growth: AFP;574
7.5.5.4;22.5.4 Vitrification at High Water Content (Liquid N and/ or with Concentrated Solutes);575
7.5.5.5;22.5.5 The Problem of Recalcitrant Seeds;576
7.5.6;22.6 Applications in Food Technology;577
7.5.7;22.7 Future Prospects;579
7.5.8;References;581
8;Part IV: Food Microstructure;585
8.1;Chapter 23: Food Microstructures for Health, Well-being, and Pleasure;586
8.1.1;23.1 Introduction;586
8.1.2;23.2 Foods Are Unique Materials;587
8.1.3;23.3 Food Structure Matters;587
8.1.4;23.4 Nature Is the Ultimate Provider of Food Structures;588
8.1.5;23.5 Atomic Doping by Nature and the Color of Some Foods;590
8.1.6;23.6 The Cow´s Udder: A Fantastic Microfluidic Device;590
8.1.7;23.7 The Kinetics of Structure Formation: The Case of Whipped Cream;591
8.1.8;23.8 Hierarchical Arrangements in Fats;592
8.1.9;23.9 Microstructures for Health;593
8.1.10;23.10 Microstructures for Pleasure;595
8.1.11;23.11 Conclusions;595
8.1.12;References;596
8.2;Chapter 24: Fruit Microstructure Evaluation Using Synchrotron X-Ray Computed Tomography;598
8.2.1;24.1 Fruit Quality and Microstructure;598
8.2.2;24.2 X-Ray Computed Tomography;600
8.2.3;24.3 Synchrotron X-Ray CT of Fruit Tissue;601
8.2.4;24.4 3-D Imaging of Fruit Microstructure;601
8.2.4.1;24.4.1 Fruit and Methods;601
8.2.4.2;24.4.2 Microstructure of Apple and Pear Fruit;603
8.2.4.3;24.4.3 Multiscale Modeling;603
8.2.5;24.5 Conclusions;606
8.2.6;References;606
8.3;Chapter 25: Multifractal Characterization of Apple Pore and Ham Fat-Connective Tissue Size Distributions Using Image Analysis;608
8.3.1;25.1 Application of Fractal and Multifractal Analysis to Biological Material;608
8.3.2;25.2 Theory of MFA;609
8.3.3;25.3 Multifractal Characterization of PSD in Fresh and Frozen-Thawed Apple Tissue;612
8.3.3.1;25.3.1 Experimental Procedure for Apple Tissue;613
8.3.3.2;25.3.2 Extracted Features and Multifractal Spectrum Computation;615
8.3.3.3;25.3.3 Results of MFA for PSD in Apples;617
8.3.4;25.4 Multifractal Characterization of FSD for Two Qualities of Presliced Pork Hams;619
8.3.4.1;25.4.1 Experimental Procedure for Ham Samples;620
8.3.4.2;25.4.2 Results of MFA for FSD in Hams;621
8.3.5;25.5 Conclusions and Outlook;622
8.3.6;References;623
9;Part V: Food Packaging;626
9.1;Chapter 26: New Packaging Materials Based on Renewable Resources: Properties, Applications, and Prospects;627
9.1.1;26.1 Introduction;627
9.1.2;26.2 Bio-plastics: Where Are We Now?;628
9.1.3;26.3 Applications of Bio-plastics;632
9.1.4;26.4 Original Properties and Active Materials for Food Packaging;633
9.1.5;26.5 Conclusions;636
9.1.6;References;637
9.2;Chapter 27: Edible Coatings to Improve Food Quality and Safety;639
9.2.1;27.1 Introduction;639
9.2.2;27.2 Edible Coating Materials;640
9.2.3;27.3 Application and Distribution of Edible Coatings on the Food Surface;642
9.2.4;27.4 Edible Coating Characteristics as Related to Polymer Structure and Physico-chemical Properties;643
9.2.5;27.5 Barrier Properties;645
9.2.5.1;27.5.1 Water Vapor Permeability;645
9.2.5.2;27.5.2 Gas Permeabilities;646
9.2.6;27.6 Composite Film Formation;647
9.2.7;27.7 Examples of Coating Applications;648
9.2.8;27.8 Incorporating Functional Ingredients into Edible Films and Coatings;649
9.2.8.1;27.8.1 Antioxidant Edible Coatings;650
9.2.8.2;27.8.2 Antimicrobial Edible Films;650
9.2.8.3;27.8.3 Edible Coatings as Carriers of Nutraceutical Ingredients;653
9.2.9;27.9 Edible Coatings to Improve Quality and Extend Shelf Life of Foods - Case Studies;654
9.2.9.1;27.9.1 Edible Coatings Acting as Oil Barriers in Fried Products;654
9.2.9.2;27.9.2 Starch-Based Edible Coatings to Prolong Storage Life of Refrigerated Highly Perishable Fruits;657
9.2.10;27.10 Final Remarks;662
9.2.11;References;663
9.3;Chapter 28: Physical Properties of Edible Gelatin Films Colored with Chlorophyllide;668
9.3.1;28.1 Introduction;668
9.3.2;28.2 Gelatin and Edible Films;669
9.3.3;28.3 Chlorophylls;670
9.3.4;28.4 Experimental Considerations;672
9.3.5;28.5 Physical Properties of Gelatin-Based Films Colored with Chlorophyllide;673
9.3.6;28.6 UV and Light Barrier Properties of Gelatin-Based Films Colored with Chlorophyllide;675
9.3.7;28.7 Color Characteristics of Gelatin-Based Films Colored with Chlorophyllide;676
9.3.8;28.8 Conclusion;682
9.3.9;References;682
10;Index;686




