Aggarwal / Wang | Managing and Mining Graph Data | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 40, 600 Seiten

Reihe: Advances in Database Systems

Aggarwal / Wang Managing and Mining Graph Data


1. Auflage 2010
ISBN: 978-1-4419-6045-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 40, 600 Seiten

Reihe: Advances in Database Systems

ISBN: 978-1-4419-6045-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing.

Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science and engineering.

Aggarwal / Wang Managing and Mining Graph Data jetzt bestellen!

Weitere Infos & Material


1;Contents;6
2;List of Figures;15
3;List of Tables;21
4;Preface;22
5;AN INTRODUCTION TO GRAPH DATA;24
5.1;1. Introduction;24
5.2;2. Graph Management and Mining Applications;26
5.3;3. Summary;31
5.4;References;32
6;GRAPH DATA MANAGEMENT AND MINING: A SURVEYOF ALGORITHMS AND APPLICATIONS;35
6.1;1. Introduction;35
6.2;2. Graph Data Management Algorithms;38
6.2.1;2.1 Indexing and Query Processing Techniques;38
6.2.2;2.2 Reachability Queries;41
6.2.3;2.3 Graph Matching;43
6.2.4;2.4 Keyword Search;46
6.2.5;2.5 Synopsis Construction of Massive Graphs;49
6.3;3. Graph Mining Algorithms;51
6.3.1;3.1 Pattern Mining in Graphs;51
6.3.2;3.2 Clustering Algorithms for Graph Data;54
6.3.3;3.3 Classification Algorithms for Graph Data;59
6.3.4;3.4 The Dynamics of Time-Evolving Graphs;62
6.4;4. Graph Applications;65
6.4.1;4.1 Chemical and Biological Applications;65
6.4.2;4.2 Web Applications;67
6.4.3;4.3 Software Bug Localization;73
6.5;5. Conclusions and Future Research;77
6.6;Notes;77
6.7;References;77
7;GRAPH MINING: LAWS AND GENERATORS;91
7.1;1. Introduction;92
7.2;2. Graph Patterns;93
7.2.1;2.1 Power Laws and Heavy-Tailed Distributions;94
7.2.2;2.2 Small Diameters;99
7.2.3;2.3 Other Static Graph Patterns;101
7.2.4;2.4 Patterns in Evolving Graphs;104
7.2.5;2.5 The Structure of Specific Graphs;106
7.3;3. Graph Generators;108
7.3.1;3.1 Random Graph Models;110
7.3.2;3.2 Preferential Attachment and Variants;114
7.3.3;3.3 Optimization-based generators;123
7.3.4;3.4 Tensor-based;130
7.3.5;3.5 Generators for specific graphs;135
7.3.6;3.6 Graph Generators: A summary;137
7.4;4. Conclusions;137
7.5;Notes;138
7.6;References;139
8;QUERY LANGUAGE AND ACCESS METHODS FOR GRAPH DATABASES;146
8.1;1. Introduction;147
8.1.1;1.1 Graphs-at-a-time Queries;147
8.1.2;1.2 Graph Specific Optimizations;148
8.1.3;1.3 GraphQL;149
8.2;2. Operations on Graph Structures;150
8.2.1;2.1 Concatenation;151
8.2.2;2.2 Disjunction;152
8.2.3;2.3 Repetition;152
8.3;3. Graph Query Language;153
8.3.1;3.1 Data Model;153
8.3.2;3.2 Graph Patterns;154
8.3.3;3.3 Graph Algebra;155
8.3.4;3.4 FLWR Expressions;158
8.3.5;3.5 Expressive Power;159
8.4;4. Implementation of the Selection Operator;161
8.4.1;4.1 Graph Pattern Matching;161
8.4.2;4.2 Local Pruning and Retrieval of Feasible Mates;163
8.4.3;4.3 Joint Reduction of Search Space;165
8.4.4;4.4 Optimization of Search Order;167
8.5;5. Experimental Study;169
8.5.1;5.1 Biological Network;169
8.5.2;5.2 Synthetic Graphs;171
8.6;6. RelatedWork;173
8.6.1;6.1 Graph Query Languages;173
8.6.2;6.2 Graph Indexing;176
8.7;7. Future Research Directions;176
8.8;8. Conclusion;177
8.9;Acknowledgments;177
8.10;Appendix: Query Syntax of GraphQL;177
8.11;References;178
9;GRAPH INDEXING;182
9.1;1. Introduction;182
9.2;2. Feature-Based Graph Index;183
9.2.1;2.1 Paths;184
9.2.2;2.2 Frequent Structures;185
9.2.3;2.3 Discriminative Structures;187
9.2.4;2.4 Closed Frequent Structures;188
9.2.5;2.5 Trees;188
9.2.6;2.6 Hierarchical Indexing;189
9.3;3. Structure Similarity Search;190
9.3.1;3.1 Feature-Based Structural Filtering;191
9.3.2;3.2 Feature Miss Estimation;192
9.3.3;3.3 Frequency Difference;193
9.3.4;3.4 Feature Set Selection;194
9.3.5;3.5 Structures with Gaps;195
9.4;4. Reverse Substructure Search;196
9.5;5. Conclusions;198
9.6;References;199
10;GRAPH REACHABILITY QUERIES: A SURVEY;202
10.1;1. Introduction;202
10.2;2. Traversal Approaches;207
10.2.1;2.1 Tree+SSPI;208
10.2.2;2.2 GRIPP;208
10.3;3. Dual-Labeling;209
10.4;4. Tree Cover;211
10.5;5. Chain Cover;212
10.5.1;5.1 Computing the Optimal Chain Cover;214
10.6;6. Path-Tree Cover;215
10.7;7. 2-HOP Cover;217
10.7.1;7.1 A Heuristic Ranking;218
10.7.2;7.2 A Geometrical-Based Approach;219
10.7.3;7.3 Graph Partitioning Approaches;220
10.7.4;7.4 2-Hop Cover Maintenance;223
10.8;8. 3-Hop Cover;225
10.9;9. Distance-Aware 2-Hop Cover;226
10.10;10. Graph Pattern Matching;228
10.10.1;10.1 A Special Case:;229
10.10.2;10.2 The General Cases;232
10.11;11. Conclusions and Summary;233
10.12;References;233
11;EXACT AND INEXACT GRAPH MATCHING: METHODOLOGY AND APPLICATIONS;237
11.1;1. Introduction;238
11.2;2. Basic Notations;239
11.3;3. Exact Graph Matching;241
11.4;4. Inexact Graph Matching;246
11.4.1;4.1 Graph Edit Distance;247
11.4.2;4.2 Other Inexact Graph Matching Techniques;249
11.5;5. Graph Matching for Data Mining and Information Retrieval;251
11.6;6. Vector Space Embeddings of Graphs via Graph Matching;255
11.7;7. Conclusions;259
11.8;References;260
12;A SURVEY OF ALGORITHMS FOR KEYWORD SEARCH ON GRAPH DATA;268
12.1;1. Introduction;269
12.2;2. Keyword Search on XML Data;271
12.2.1;2.1 Query Semantics;272
12.2.2;2.2 Answer Ranking;273
12.2.3;2.3 Algorithms for LCA-based Keyword Search;277
12.3;3. Keyword Search on Relational Data;279
12.3.1;3.1 Query Semantics;279
12.3.2;3.2 DBXplorer and DISCOVER;280
12.4;4. Keyword Search on Schema-Free Graphs;282
12.4.1;4.1 Query Semantics and Answer Ranking;282
12.4.2;4.2 Graph Exploration by Backward Search;284
12.4.3;4.3 Graph Exploration by Bidirectional Search;285
12.4.4;4.4 Index-based Graph Exploration – the BLINKS Algorithm;286
12.4.5;4.5 The ObjectRank Algorithm;288
12.5;5. Conclusions and Future Research;290
12.6;References;290
13;A SURVEY OF CLUSTERING ALGORITHMS FOR GRAPH DATA;293
13.1;1. Introduction;293
13.2;2. Node Clustering Algorithms;295
13.2.1;2.1 The Minimum Cut Problem;295
13.2.2;2.2 Multi-way Graph Partitioning;299
13.2.3;2.3 Conventional Generalizations and Network Structure Indices;300
13.2.4;2.4 The Girvan-Newman Algorithm;302
13.2.5;2.5 The Spectral Clustering Method;303
13.2.6;2.6 Determining Quasi-Cliques;306
13.2.7;2.7 The Case of Massive Graphs;307
13.3;3. Clustering Graphs as Objects;309
13.3.1;3.1 Extending Classical Algorithms to Structural Data;309
13.3.2;3.2 The XProj Approach;311
13.4;4. Applications of Graph Clustering Algorithms;313
13.4.1;4.1 Community Detection in Web Applications and Social Networks;314
13.4.2;4.2 Telecommunication Networks;315
13.4.3;4.3 Email Analysis;315
13.5;5. Conclusions and Future Research;315
13.6;References;317
14;A SURVEY OF ALGORITHMS FOR DENSE SUBGRAPH DISCOVERY;320
14.1;1. Introduction;321
14.2;2. Types of Dense Components;322
14.2.1;2.1 Absolute vs. Relative Density;322
14.2.2;2.2 Graph Terminology;323
14.2.3;2.3 Definitions of Dense Components;324
14.2.4;2.4 Dense Component Selection;325
14.2.5;2.5 Relationship between Clusters and Dense Components;326
14.3;3. Algorithms for Detecting Dense Components in a Single Graph;328
14.3.1;3.1 Exact Enumeration Approach;328
14.3.2;3.2 Heuristic Approach;331
14.3.3;3.3 Exact and Approximation Algorithms for Discovering Densest Components;339
14.4;4. Frequent Dense Components;344
14.4.1;4.1 Frequent Patterns with Density Constraints;344
14.4.2;4.2 Dense Components with Frequency Constraint;345
14.4.3;4.3 Enumerating Cross-Graph Quasi-Cliques;345
14.5;5. Applications of Dense Component Analysis;346
14.6;6. Conclusions and Future Research;348
14.7;References;350
15;GRAPH CLASSIFICATION;354
15.1;1. Introduction;354
15.2;2. Graph Kernels;357
15.2.1;2.1 RandomWalks on Graphs;358
15.2.2;2.2 Label Sequence Kernel;359
15.2.3;2.3 Efficient Computation of Label Sequence Kernels;360
15.2.4;2.4 Extensions;366
15.3;3. Graph Boosting;366
15.3.1;3.1 Formulation of Graph Boosting;368
15.3.2;3.2 Optimal Pattern Search;370
15.3.3;3.3 Computational Experiments;371
15.3.4;3.4 RelatedWork;372
15.4;4. Applications of Graph Classification;375
15.5;5. Label Propagation;375
15.6;6. Concluding Remarks;376
15.7;References;376
16;MINING GRAPH PATTERNS;381
16.1;1. Introduction;382
16.2;2. Frequent Subgraph Mining ;382
16.2.1;2.1 Problem Definition;382
16.2.2;2.2 Apriori-based Approach;383
16.2.3;2.3 Pattern-Growth Approach;384
16.2.4;2.4 Closed and Maximal Subgraphs;385
16.2.5;2.5 Mining Subgraphs in a Single Graph;386
16.2.6;2.6 The Computational Bottleneck;387
16.3;3. Mining Significant Graph Patterns ;388
16.3.1;3.1 Problem Definition;388
16.3.2;3.2 gboost: A Branch-and-Bound Approach;389
16.3.3;3.3 gPLS: A Partial Least Squares Regression Approach;391
16.3.4;3.4 LEAP: A Structural Leap Search Approach;394
16.3.5;3.5 GraphSig: A Feature Representation Approach;398
16.4;4. Mining Representative Orthogonal Graphs;401
16.4.1;4.1 Problem Definition;402
16.4.2;4.2 Randomized Maximal Subgraph Mining;403
16.4.3;4.3 Orthogonal Representative Set Generation;404
16.5;5. Conclusions;405
16.6;References;405
17;A SURVEY ON STREAMING ALGORITHMS FOR MASSIVE GRAPHS;409
17.1;1. Introduction;409
17.2;2. Streaming Model for Massive Graphs;411
17.3;3. Statistics and Counting Triangles;413
17.4;4. Graph Matching;416
17.4.1;4.1 Unweighted Matching;416
17.4.2;4.2 Weighted Matching;419
17.5;5. Graph Distance;421
17.5.1;5.1 Distance Approximation using Multiple Passes;422
17.5.2;5.2 Distance Approximation in One Pass;427
17.6;6. Random Walks on Graphs;428
17.7;7. Conclusions;432
17.8;References;433
18;A SURVEY OF PRIVACY-PRESERVATION OF GRAPHS AND SOCIAL NETWORKS;437
18.1;1. Introduction;438
18.1.1;1.1 Privacy in Publishing Social Networks;438
18.1.2;1.2 Background Knowledge;439
18.1.3;1.3 Utility Preservation;440
18.1.4;1.4 Anonymization Approaches;440
18.1.5;1.5 Notations;441
18.2;2. Privacy Attacks on Naive Anonymized Networks;442
18.2.1;2.1 Active Attacks and Passive Attacks;442
18.2.2;2.2 Structural Queries;443
18.2.3;2.3 Other Attacks;444
18.3;3. K-Anonymity Privacy Preservation via Edge Modification;444
18.3.1;3.1 K-Degree Generalization;445
18.3.2;3.2 K-Neighborhood Anonymity;446
18.3.3;3.3 K-Automorphism Anonymity;447
18.4;4. Privacy Preservation via Randomization;449
18.4.1;4.1 Resilience to Structural Attacks;450
18.4.2;4.2 Link Disclosure Analysis;451
18.4.3;4.3 Reconstruction;453
18.4.4;4.4 Feature Preserving Randomization;454
18.5;5. Privacy Preservation via Generalization;456
18.6;6. Anonymizing Rich Graphs;457
18.6.1;6.1 Link Protection in Rich Graphs;458
18.6.2;6.2 Anonymizing Bipartite Graphs;459
18.6.3;6.3 Anonymizing Rich Interaction Graphs;460
18.6.4;6.4 Anonymizing Edge-Weighted Graphs;461
18.7;7. Other Privacy Issues in Online Social Networks;462
18.7.1;7.1 Deriving Link Structure of the Entire Network;462
18.7.2;7.2 Deriving Personal Identifying Information from Social Networking Sites;464
18.8;8. Conclusion and Future Work;464
18.9;Acknowledgments;465
18.10;References;465
19;A SURVEY OF GRAPH MINING FOR WEB APPLICATIONS;470
19.1;1. Introduction;471
19.2;2. Preliminaries;472
19.2.1;2.1 Link Analysis Ranking Algorithms;474
19.3;3. Mining High-Quality Items;476
19.3.1;3.1 Prediction of Successful Items in a Co-citation Network;478
19.3.2;3.2 Finding High-Quality Content in Question-Answering Portals;480
19.4;4. Mining Query Logs;484
19.4.1;4.1 Description of Query Logs;485
19.4.2;4.2 Query Log Graphs;485
19.4.3;4.3 Query Recommendations;492
19.5;5. Conclusions;495
19.6;References;496
20;GRAPH MINING APPLICATIONS TO SOCIAL NETWORK ANALYSIS;501
20.1;1. Introduction;501
20.2;2. Graph Patterns in Large-Scale Networks;503
20.2.1;2.1 Scale-Free Networks;503
20.2.2;2.2 Small-World Effect;505
20.2.3;2.3 Community Structures;506
20.2.4;2.4 Graph Generators;508
20.3;3. Community Detection;508
20.3.1;3.1 Node-Centric Community Detection;509
20.3.2;3.2 Group-Centric Community Detection;512
20.3.3;3.3 Network-Centric Community Detection;513
20.3.4;3.4 Hierarchy-Centric Community Detection;518
20.4;4. Community Structure Evaluation;519
20.5;5. Research Issues;521
20.6;References;522
21;SOFTWARE-BUG LOCALIZATION WITH GRAPH MINING;528
21.1;1. Introduction;529
21.2;2. Basics of Call Graph Based Bug Localization;530
21.2.1;2.1 Dynamic Call Graphs;530
21.2.2;2.2 Bugs in Software;531
21.2.3;2.3 Bug Localization with Call Graphs;532
21.2.4;2.4 Graph and Tree Mining;533
21.3;3. RelatedWork;534
21.4;4. Call-Graph Reduction;538
21.4.1;4.1 Total Reduction;538
21.4.2;4.2 Iterations;539
21.4.3;4.3 Temporal Order;541
21.4.4;4.4 Recursion;542
21.4.5;4.5 Comparison;544
21.5;5. Call Graph Based Bug Localization;545
21.5.1;5.1 Structural Approaches;545
21.5.2;5.2 Frequency-based Approach;548
21.5.3;5.3 Combined Approaches;551
21.5.4;5.4 Comparison;552
21.6;6. Conclusions and Future Directions;555
21.7;Acknowledgments;556
21.8;References;556
22;A SURVEY OF GRAPH MINING TECHNIQUES FOR BIOLOGICAL DATASETS;560
22.1;1. Introduction;561
22.2;2. Mining Trees;562
22.2.1;2.1 Frequent Subtree Mining;563
22.2.2;2.2 Tree Alignment and Comparison;565
22.2.3;2.3 Statistical Models;567
22.3;3. Mining Graphs for the Discovery of Frequent Substructures;568
22.3.1;3.1 Frequent Subgraph Mining;568
22.3.2;3.2 Motif Discovery in Biological Networks;573
22.4;4. Mining Graphs for the Discovery of Modules;575
22.4.1;4.1 Extracting Communities;577
22.4.2;4.2 Clustering;579
22.5;5. Discussion;582
22.6;References;584
23;TRENDS IN CHEMICAL GRAPH DATA MINING;594
23.1;1. Introduction;595
23.2;2. Topological Descriptors for Chemical Compounds;596
23.2.1;2.1 Hashed Fingerprints (FP);597
23.2.2;2.2 Maccs Keys (MK);597
23.2.3;2.3 Extended Connectivity Fingerprints (ECFP);597
23.2.4;2.4 Frequent Subgraphs (FS);598
23.2.5;2.5 Bounded-Size Graph Fragments (GF);598
23.2.6;2.6 Comparison of Descriptors;598
23.3;3. Classification Algorithms for Chemical Compounds;601
23.3.1;3.1 Approaches based on Descriptors;601
23.3.2;3.2 Approaches based on Graph Kernels;602
23.4;4. Searching Compound Libraries;603
23.4.1;4.1 Methods Based on Direct Similarity;604
23.4.2;4.2 Methods Based on Indirect Similarity;605
23.4.3;4.3 Performance of Indirect Similarity Methods;607
23.5;5. Identifying Potential Targets for Compounds;608
23.5.1;5.1 Model-based Methods For Target Fishing;609
23.5.2;5.2 Performance of Target Fishing Strategies;613
23.6;6. Future Research Directions;613
23.7;References;615
24;Index;620



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.