Agarwal / Miller / Hu | Integrated Photonics for Sensing Applications | Buch | 978-0-443-26578-5 | sack.de

Buch, Englisch, 350 Seiten, Format (B × H): 152 mm x 229 mm

Agarwal / Miller / Hu

Integrated Photonics for Sensing Applications


Erscheinungsjahr 2026
ISBN: 978-0-443-26578-5
Verlag: Elsevier Science

Buch, Englisch, 350 Seiten, Format (B × H): 152 mm x 229 mm

ISBN: 978-0-443-26578-5
Verlag: Elsevier Science


Photonic Integrated Circuits for Sensing Applications delves into the fascinating world of sensors within the realm of integrated photonics. The book begins with a historical overview, tracing the evolution of spectroscopic sensing techniques such as FTIR, Raman, SPR, and reflectometry, each contributing to the field’s growth. It emphasizes the transformative potential of photonic integrated circuit (PIC) sensor systems by showcasing their advantages in achieving low SWAP-C metrics (size, weight, power, and cost) while maintaining high performance. Complete with technical insights, the book sets the stage for understanding how PICs are revolutionizing sensing applications across diverse industries.

Beyond the introductory scope, the book thoroughly examines the components that constitute PIC sensor systems, including waveguides (operating below and above 1550 nm), ring resonators, photonic crystals, and MZ interferometers. It also explores integrated systems designed for chem-bio sensing applications, leveraging biofunctionalization and sorbent technologies. With attention to manufacturing scalability, topics such as materials, PDK development, and sensor packaging are addressed, ensuring readers grasp the practical aspects of producing advanced sensor systems at scale.

Agarwal / Miller / Hu Integrated Photonics for Sensing Applications jetzt bestellen!

Weitere Infos & Material


1. Introduction to PIC Sensors
2. Waveguide material platforms for short-wave IR sensing with a focus on silicon nitride
3. Non SiN waveguide material platforms for visible and near IR sensing
4. Waveguide platforms for mid-wave IR sensing
5. On-chip spectrometers for sensing
6. On-chip widely tunable lasers for sensing
7. Refractive index sensing
8. Direct absorption spectroscopy with dispersive methods
9. Raman (WERS), SERS, fluorescence spectroscopy
10. Functionalization of PICs for molecular adsorption in sensing
11. Bringing the sample/analyte to the PIC Sensor
12. Packaging: fully integrated sensor devices
13. Future of PIC Sensors: Development of PDKs, ADKs, and standards


Hu, Juejun
Juejun (JJ) Hu is currently the John F. Elliott Professor of Materials Science and Engineering at MIT. His primary research interest covers new optical materials exemplified by chalcogenide compounds, as well as enhanced photon-matter interactions in nanophotonic structures. He has authored and coauthored over 150 refereed journal publications and technologies developed in his lab have led to several spin-off companies.

Miller, Benjamin
Benjamin Miller joined the University of Rochester faculty in 1996, where he is currently Dean's Professor of Dermatology, Biochemistry and Biophysics, Biomedical Engineering, and Optics. His group's expertise in interferometric and photonic sensing has been applied to the development of several novel optical biosensor platforms, and his group's work on RNA-targeted drug discovery has resulted in synthetic compounds targeting RNAs involved in several human diseases.

Agarwal, Anu
Anu Agarwal is a Principal Research Scientist at MIT, where she is developing an integrated Si-CMOS compatible platform of linear and non-linear materials for photonic devices and systems, especially in the mid-IR regime, for hyperspectral imaging and chem-bio sensing, because most chemical pollutants and biological toxins have their fingerprints in this range.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.