Adámek / Milius / Moss | Initial Algebras and Terminal Coalgebras | Buch | 978-1-108-83546-6 | sack.de

Buch, Englisch, Band 62, 640 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 1067 g

Reihe: Cambridge Tracts in Theoretical Computer Science

Adámek / Milius / Moss

Initial Algebras and Terminal Coalgebras


Erscheinungsjahr 2025
ISBN: 978-1-108-83546-6
Verlag: Cambridge University Press

Buch, Englisch, Band 62, 640 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 1067 g

Reihe: Cambridge Tracts in Theoretical Computer Science

ISBN: 978-1-108-83546-6
Verlag: Cambridge University Press


Providing an in-depth treatment of an exciting research area, this text's central topics are initial algebras and terminal coalgebras, primary objects of study in all areas of theoretical computer science connected to semantics. It contains a thorough presentation of iterative constructions, giving both classical and new results on terminal coalgebras obtained by limits of canonical chains, and initial algebras obtained by colimits. These constructions are also developed in enriched settings, especially those enriched over complete partial orders and complete metric spaces, connecting the book to topics like domain theory. Also included are an extensive treatment of set functors, and the first book-length presentation of the rational fixed point of a functor, and of lifting results which connect fixed points of set functors with fixed points of endofunctors on other categories. Representing more than fifteen years of work, this will be the leading text on the subject for years to come.

Adámek / Milius / Moss Initial Algebras and Terminal Coalgebras jetzt bestellen!

Weitere Infos & Material


1. Introduction; 2. Algebras and coalgebras; 3. Finitary iteration; 4. Finitary set functors; 5. Finitary iteration in enriched settings; 6. Transfinite iteration; 7. Terminal coalgebras as algebras, initial algebras as coalgebras; 8. Well-founded coalgebras; 9. State minimality and well-pointed coalgebras; 10. Fixed points determined by finite behaviour; 11. Sufficient conditions for initial algebras and terminal coalgebras; 12. Liftings and extensions from Set; 13. Interaction between initial algebras and terminal coalgebras; 14. Derived functors; 15. Special topics; A. Functors with initial algebras or terminal coalgebras; B. A primer on fixed points in ordered and metric structures; C. Set functors; References; Index of categories; Subject index.


Milius, Stefan
Stefan Milius is Professor in the Department of Computer Science at Friedrich-Alexander-Universität Erlangen-Nürnberg. An expert in the theory of coalgebras, he is also well known for his work on the category-theoretic approach to the semantics of iteration and recursion, for which he has won the prestigious Ackermann Award. He is one of the inventors of the categorical approach to algebraic language theory.

Moss, Lawrence S.
Lawrence S. Moss is Professor in the Mathematics Department at Indiana University Bloomington. He is President of the Association for Logic, Language, and Information, and co-authored 'Vicious Circles' (1996) and 'Mathematical Structures in Language' (2016). He is known for work on dynamic epistemic logic, non-well-founded sets and circularity, coalgebra, natural logic, and other areas of logic and mathematics.

Adámek, Jirí
Jirí Adámek is Professor in the Department of Mathematics at Czech Technical University Prague and Professor Emeritus in the Department of Computer Science at Technical University Braunschweig. He has authored and co-authored ten books, including 'Locally Presentable and Accessible Categories' (1994), 'Abstract and Concrete Categories' (1990), and 'Algebraic Theories' (2011). He is an EATCS Fellow.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.