E-Book, Englisch, 273 Seiten, Web PDF
Reihe: IFAC Symposia Series
Adali / Tunali Microcomputer Application in Process Control
1. Auflage 2014
ISBN: 978-1-4832-9893-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Selected Papers from the IFAC Symposium, Istanbul, Turkey, 22-25 July 1986
E-Book, Englisch, 273 Seiten, Web PDF
Reihe: IFAC Symposia Series
ISBN: 978-1-4832-9893-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
This symposium brings together the research from different disciplines of process control, and discusses the problems encountered in the application of automation systems. The papers in this volume analyze the results of theoretical research and how far applications have been developed, new design methodologies and technologies, to give a comprehensive overview of the state of the art of this fast-developing science.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Microcomputer Application in Process Control;4
3;Copyright Page;5
4;Table of Contents;10
5;PREFACE;8
6;PART 1: SURVEYS/TUTORIALS;14
6.1;CHAPTER 1. TRENDS IN INSTRUMENTATION ANDCONTROL;14
6.2;CHAPTER 2. FAST ALGORITHMS AND ARCHITECTURES FOR SIGNAL/IMAGE PROCESSING AND UNDERSTANDING IN INTELLIGENT AUTOMATION SYSTEMS;18
6.2.1;1. INTRODUCTION;18
6.2.2;2. REAL DISCRETE FOURIER TRANSFORM;18
6.2.3;3. REPRESENTATION OF RDFT IN TERMS OF A NEW SET OF BASIS FUNCTIONS;19
6.2.4;4. PROPERTIES OF THE NEWBASIS FUNCTIONS;19
6.2.5;5. THE NEW TRANSFORMS;20
6.2.6;6. GENERALIZED RDFT: SECOND FAMILYOF TRANSFORMS;20
6.2.7;7. FAST TRANSFORMS FOR COMPUTINGEIGENVALUES, EIGENVECTORS ANDAPPROXIMATING KLT;21
6.2.8;8. COMPUTATIONAL ALGORITHMS, VLSI, PARALLEL PROCESSING AND RELATED COMPUTER ARCHITECTURES;21
6.2.9;9. SOME RECENT EXPERIMENTS;22
6.2.10;10. FAST ALGORITHMS ANDARTIFICIAL INTELLIGENCE (AI);23
6.2.11;11. CONCLUSIONS;24
6.2.12;REFERENCES;24
6.3;CHAPTER 3. FAILURE DETECTION AND ISOLATION IN COMPLEX PROCESS PLANTSA SURVEY;26
6.3.1;INTRODUCTION;26
6.3.2;MODEL-BASED METHODS;27
6.3.3;GENERATING THE RESIDUALS;29
6.3.4;STATISTICAL TESTING;30
6.3.5;ISOLABILITY CONDITIONS;31
6.3.6;SENSITIVITY AND ROBUSTNESS;33
6.3.7;CONCLUSION;34
6.3.8;REFERENCES;34
6.4;CHAPTER 4. EDUCATION FOR MICROPROCESSOR APPLICATION IN CONTROL;38
6.4.1;INTRODUCTION;38
6.4.2;USE OF WORKSTATIONS INCONTROL TEACHING;38
6.4.3;EXAMPLE 1;38
6.4.4;EXAMPLE 2;41
6.4.5;EXAMPLE 3;42
6.4.6;CONCLUSIONS;44
6.4.7;REFERENCES;44
6.5;CHAPTER 5. METHODOLOGY FOR LARGE-SCALE PROCESS CONTROL SYSTEM DESIGN;46
6.5.1;INTRODUCTION;46
6.5.2;CONTROL SYSTEM DESIGN PROCESS;46
6.5.3;SOFTWARE DEVELOPMENT AND TRANSFER;50
6.5.4;SIMULATION AND CONTROL PROGRAM (SIMK0N);50
6.5.5;SIMKON-IV DEMONSTRATION EXAMPLE;52
6.5.6;CURRENT ACTIVITIES;57
6.5.7;CONCLUSION;57
6.5.8;ACKNOWLEDGEMENT;57
6.5.9;REFERENCES;57
6.6;CHAPTER 6. THE THREE WAVES OF AUTOMATIC CONTROL;60
6.6.1;INTRODUCTION;60
6.7;CHAPTER 7. ENERGY MANAGEMENT FOR PROCESS INDUSTRY: HOW MUCH CONTROLIS NEEDED;66
6.7.1;INTRODUCTION AND OVERVIEW;66
6.7.2;ENERGY SAVING OPPORTUNITIES;67
6.7.3;TABLE 1: ENERGY SAVINGS BY FEEDBACK CONTROLS;67
6.7.4;TABLE 2: ENERGY SAVINGS BY SUPERVISORY AND OPTIMIZING;67
6.7.5;DESCRIPTION OF METHODOLOGY;67
6.7.6;IMPLEMENTATION;69
6.7.7;CONCLUSIONS;69
6.7.8;REFERENCES;70
7;PART 2: ADAPTIVE SYSTEMS;72
7.1;CHAPTER 8. A MICROPROCESSOR-BASED MODEL REFERENCE ADAPTIVE CONTROL SYSTEM FOR HYDROELECTRIC GENERATING SET;72
7.1.1;INTRODUCTION;72
7.1.2;CONFIGURATION AND FUNCTIONS;72
7.1.3;ADAPTATION LAW;74
7.1.4;ADJUSTMENT LAW OF PID PARAMETERS;75
7.1.5;THE RESULTS OF EXPERIMENT;75
7.1.6;CONCLUSIONS;75
7.1.7;REFERENCES;75
7.2;CHAPTER 9. ADAPTIVE ROBUST SPEED REGULATOR FOR HYDROELECTRIC GENERATING SET;76
7.2.1;INTRODUCTION;76
7.2.2;UNIFIED MODEL AND ITS ADAPTIVECONTROL LAW;76
7.2.3;ADAPTIVE ROBUST CONTROL SCHEME;77
7.2.4;APPLICATION TO THE SPEED REGULATOROF A HYDROTURBINE;77
7.2.5;CONCLUSION;78
7.2.6;REFERENCES;78
7.3;CHAPTER 10. NEW CONTROL ALGORITHMS BASED ON THE SLIDING MODE CONTROL METHODOLOGY;80
7.3.1;INTRODUCTION;80
7.3.2;PROBLEM FORMULATION FORSISO SYSTEMS;81
7.3.3;DERIVATION OF THE C/A ALGORITHM;81
7.3.4;DERIVATION OF THE P/A ALGORITHM;82
7.3.5;SIMULATION RESULTS;83
7.3.6;CONCLUSIONS;83
7.3.7;REFERENCES;84
7.4;CHAPTER 11. A GENERATIVE MODEL FOR ASYNCHRONOUS FINITE-VALUED TIME SIGNALS AS APPLIED TO COMPUTER-BASED PROCESS CONTROL;86
7.4.1;INTRODUCTION;86
7.4.2;THE MODEL;86
7.4.3;LIMITATIONS IMPOSED IN THEPROCESS CONTROL ENVIRONMENT;88
7.4.4;IMPLEMENTING THE GENERATOR IN THEPRESENCE OF PHYSICAL CONSTRAINTS;88
7.4.5;QUALITATIVE MEASURESOF SIGNAL BEHAVIOR;88
7.4.6;CONCLUSIONS;88
7.4.7;REFERENCES;88
7.5;CHAPTER 12. ASSEMBLER GENERATED BINARY TESTSIGNALS FOR PROCESS IDENTIFICATION;90
7.5.1;INTRODUCTION;90
7.5.2;TEST SIGNALS FOR IDENTIFICATION;91
7.5.3;A CODING THEORY FOR IDENTIFICATION;92
7.5.4;The IDENTIFICATION SOURCE CODING THEOREM statesthat;92
7.5.5;ASSEMBLER GENERATION OFBINARY TEST SIGNALS;93
7.5.6;CONCLUSION;95
7.5.7;ACKNOWLEDGEMENT;95
7.5.8;REFERENCES;95
8;PART 3: HARDWARE, INTERFACE AND COMPUTER ARCHITECTURE;96
8.1;CHAPTER 13. A MULTIPROCESSOR ARCHITECTURE ANDITS APPLICATION TO ADAPTIVE CONTROL;96
8.1.1;INTRODUCTION;96
8.1.2;HARDWARE ARCHITECTURE;96
8.1.3;THE EXECUTIVE;97
8.1.4;APPLICATION TO ADAPTIVE CONTROL;98
8.1.5;IMPLEMENTATION OF THE CONTROLALGORITHM;100
8.1.6;PERFORMANCES OF THE ADAPTIVECONTROLLERS;100
8.1.7;CONCLUSIONS;101
8.1.8;REFERENCES;101
9;PART 4: OPTIMIZATION, EXPERT SYSTEMS AND LEARNING SYSTEMS;102
9.1;CHAPTER 14. MICROPROCESSOR IMPLEMENTED SUB-OPTIMUM SMITH CONTROLLERS FOR TEMPERATURE CONTROL;102
9.1.1;INTRODUCTION;102
9.1.2;PROCESS IDENTIFICATION;102
9.1.3;CONTROLLER DESIGN;103
9.1.4;CONTROL ALGORITHMS;103
9.1.5;STABILITY OF THE SMITH PREDICTOR CONTROLLERS;103
9.1.6;CONCLUSION;104
9.1.7;REFERENCES;104
9.2;CHAPTER 15. USING EXPERT SYSTEMS TO TROUBLESHOOT MICROPROCESSOR-BASED CONTROL SYSTEMS:AN EXPECTATION-BASED APPROACH;108
9.2.1;INTRODUCTION;108
9.2.2;EXPERT SYSTEMS APPLIED TO CONTROLLER TROUBLESHOOTING;108
9.2.3;THE EXPECTATION-BASED APPROACHTO TROUBLESHOOTING;109
9.2.4;THE FEXPR CONTROLLER TROUBLESHOOTING SYSTEM;109
9.2.5;INTERACTING WITH THE USER;110
9.2.6;CONCLUSION;110
9.2.7;ACKNOWLEDGEMENTS;111
9.2.8;REFERENCES;111
9.3;CHAPTER 16. AN ASSOCIATIVE MEMORY BASED LEARNING CONTROL SCHEME WITH PI-CONTROLLER FOR SISO-NONLINEAR PROCESSES;112
9.3.1;INTRODUCTION;112
9.3.2;LEARNING CONTROL CONCEPT;112
9.3.3;CONTROL STRATEGY;113
9.3.4;SOME EXPERIMENTAL RESULTS;115
9.3.5;CONCLUSION;115
9.3.6;REFERENCES;115
10;PART 5: CEMENT INDUSTRY;120
10.1;CHAPTER 17. APPLICATION OF MODERN NUMERICAL CONTROL TO AN INDUSTRIAL ROTARY CEMENT KILN;120
10.1.1;1. INTRODUCTION;120
10.1.2;2. DESCRIPTION OF THE ACTUAL KILN PROCESS;120
10.1.3;3. IDENTIFICATION OF THE ROTARY CEMENT KILN;121
10.1.4;4. CONTROLLER DESIGN;122
10.1.5;5. TEST RESULTS;124
10.1.6;6. CONCLUSIONS;125
10.1.7;REFERENCES;125
10.2;CHAPTER 18. SOFTWARE DEVELOPMENT AND ON LINE TESTS OF A MICROPROCESSOR BASED AUTOMATIC START UP SYSTEM FOR AFLUIDIZED BED LIGNITE COMBUSTOR;126
10.2.1;INTRODUCTION;126
10.2.2;HARDWARE OF THE SYSTEM;126
10.2.3;SOFTWARE DEVELOPED;126
10.2.4;EXPERIMENTAL;127
10.2.5;RESULTS AND DISCUSSION;127
10.2.6;REFERENCES;127
11;PART 6: CHEMICAL, PETRO-CHEMICAL INDUSTRY;130
11.1;CHAPTER 19. COST-OPTIMIZED ENERGY CONSUMPTION IN SEWAGE TREATMENT PLANTS ON-LINE CONTROLLED BY DISTRIBUTED MICROPROCESSOR SYSTEMS;130
11.1.1;PRESENTATION OF THE PROBLEM;130
11.1.2;OPTIMIZATION STRATEGY;131
11.1.3;REALIZATION AND EXPERIENCES;134
11.1.4;REFERENCES;135
11.1.5;APPENDIX A;135
11.2;CHAPTER 20. DISTRIBUTED MICROPROCESSOR-BASEDCONTROL SYSTEMS FOR FLUE GASCLEANING;136
11.2.1;1. ANALYSIS OF THE FLUE GAS CLEANINGPROCESS;136
11.2.2;2. AVAILABILITY REQUIREMENTS FOR THE FLUE GAS CLEANING PROCESS;136
11.2.3;3. PRESENTATION OF A CONTROL SYSTEM WITH FLEXIBLE FUNCTIONAL STRUCTURE FOR FLUEGAS CLEANING PLANTS;138
11.2.4;4. SPECIAL CHARACTERISTICS OF PROCONTROL PCONTROL SYSTEM;140
11.2.5;5. CONCLUSION;142
11.2.6;6. REFERENCES;142
11.3;CHAPTER 21. FAULT-TOLERANT MICROCOMPUTER CONTROL OF A HEAT EXCHANGER NETWORK;144
11.3.1;INTRODUCTION;144
11.3.2;EXPERIMENTAL RESULTS;146
11.3.3;CONCLUSIONS;147
11.3.4;REFERENCES;147
12;PART 7: ENERGY AND POWER SYSTEMS;150
12.1;CHAPTER 22. MICROCOMPUTER APPLICATION IN LARGE POWER PLANTS;150
12.1.1;1. INTRODUCTION;150
12.1.2;2. HISTORICAL DEVELOPMENT;150
12.1.3;3. A MODERN MICROPROCESSOR-BASED CONTROL AND MONITORING SYSTEM (1);151
12.1.4;4- APPLICATION OF PROGRAMMABLE CONTROL AND M0NITORING SYSTEMS IN HYDRO-ELECTRIC POWER STATTIONS;153
12.2;CHAPTER 23. MICROCOMPUTER AND COMPUTER APPLICATIONS IN THE HYDRO-ELECTRI CPOWER PLANTS KARAKAYA AND ATATURK;156
12.2.1;ABSTRACT;156
12.2.2;KEYWORDS;156
12.2.3;1. INTRODUCTION;156
12.2.4;2. PROCESS SEQUENCE CONTROL SYSTEM;157
12.2.5;3. PROCESS OPERATION CONTROL SYSTEM;157
12.2.6;4. PROTECTION SYSTEMS;158
12.2.7;5. SUPERVISORY SYSTEM;158
12.2.8;6. AUTOMATIC TRANSFER/LOAD SHEDDING SYSTEM;158
12.2.9;7. CONCLUSION;159
12.2.10;LIST OF FIGURES;159
12.2.11;BIBLIOGRAPHY;159
12.3;CHAPTER 24. THE APPLICATION OF INTEL 8080 MICROCOMPUTER SYSTEM TO MEASUREMENT AND CONTROL OF ENERGY AND POWER OF STEAM;164
12.3.1;INTRODUCTION;164
12.3.2;uMEC-80 STEAM FLOW COMPUTER;164
12.3.3;APPLICATION;166
12.3.4;CONCLUSIONS;167
12.3.5;ACKNOWLEDGMENTS;167
12.3.6;REFERENCES;167
12.4;CHAPTER 25. SPEED CONTROL OF KAPLAN TURBINE BYUSING MICROPROCESSOR;170
12.4.1;INTRODUCTION;170
12.4.2;CONTROLLED SYSTEM (PLANT);170
12.4.3;CONTROLLER WITH MICROPROCESSOR;171
12.4.4;MEASUREMENT OF THE SPEED;172
12.4.5;CONTROL ALGORITHM;173
12.4.6;CONTROL OF HYDRAULIC SEWOMOTOR;174
12.4.7;EXPERIMENTAL RESULTS;174
12.4.8;CONCLUSIONS;174
12.4.9;REFERENCES;174
12.5;CHAPTER 26. REAL TIME CONTROL OF THE POWER PROVIDED BY TWO AEROGENERATORS FROM A SINGLE SPECIALIZED PROCESSOR;176
12.5.1;INTRODUCTION;176
12.5.2;SYSTEM DESCRIPTION;176
12.5.3;STATEMENT OF POWER CHARACTERISTICS;178
12.5.4;PROPOSAL OF A NEW ALGORITHM;178
12.5.5;CONCLUSION;179
12.5.6;References;179
12.6;CHAPTER 27. A CENTRALIZED AGRICULTURAL IRRIGATION SYSTEM;180
12.6.1;INTRODUCTION;180
12.6.2;OPERATIONAL ASPECTS OF THE IRRIGATION SYSTEM;180
12.6.3;DESCRIPTION OF THE CENTRALIZED SYSTEM;181
12.6.4;THE PUMP CONTROL UNIT;182
12.6.5;THE CENTRAL STATION;183
12.6.6;CS SOFTWARE;183
12.6.7;CS FUNCTIONS;183
12.6.8;CONCLUSION;184
13;PART 8: ROBOTICS;186
13.1;CHAPTER 28. MULTIPROCESSOR CONTROLLED ROBOTS;186
13.1.1;STATE FEEDBACK CONTROL;187
13.1.2;INTELLIGENT DRIVE;188
13.1.3;HARDWARE;189
13.1.4;SOFTWARE;190
13.1.5;RESULTS;191
13.1.6;CONCLUSION;191
13.2;CHAPTER 29. MULTI-MICROCOMPUTER ROBOT CONTROL SYSTEM USING A SPECIAL ROBOT-ARITHMETIC-PROCESSOR FOR ADVANCED APPLICATIONS OF ROBOT MANIPULATORS;192
13.2.1;INTRODUCTION;192
13.2.2;MULTMICROPROCESSOR CONTROL ARCHITECTURE;192
13.2.3;RAP - ROBOT ARITHMETIC PROCESSOR;193
13.2.4;APPLICATIONS;195
13.2.5;REAL-TIME IMPLEMENTATION - AN EXAMPLE;196
13.2.6;CONCLUSION;197
13.2.7;REFERENCES;197
13.2.8;APPENDIX;197
13.3;CHAPTER 30. EXTERNAL CONTROL AND GRAPHICS SIMULATION OF A TRACKING ROBOT;198
13.3.1;INTRODUCTION;198
13.3.2;OPTICAL SENSORS FOR ROBOT VISION.;198
13.3.3;CONTROL SYSTEM OF A TRACKING ROBOT.;200
13.3.4;GRAPHICS SIMULATION;202
13.3.5;CONCLUSIONS;202
13.3.6;ACKNOWLEDGEMENTS;202
13.3.7;REFERENCES;202
13.4;CHAPTER 31. OPTICAL PROXIMITY SENSOR SYSTEMS FOR INTELLIGENT ROBOT HANDS;204
13.4.1;INTRODUCTION;204
13.4.2;STRUCTURE OF BASIC OPTICAL PROXIMITY SENSOR DESIGN;204
13.4.3;HARDWARESTRUCTURE;205
13.4.4;ALGORITHMS;206
13.4.5;VARIATION OF THE BASIC SENSOR DESIGN;206
13.4.6;SENSORAPPLICATIONS;208
13.4.7;CONCLUSIONS;209
13.4.8;REFERENCES;209
14;PART 9: AUTOMATION AND MANUFACTURING;210
14.1;CHAPTER 32. DEVELOPMENT OF A CONTROL SYSTEM FOR A FILM PROCESSING DEVICE AND TECHNOLOGY TRANSFER TO AN INDUSTRIAL COMPANY;210
14.1.1;INTRODUCTION;210
14.1.2;SYSTEM ANALYSIS AND DESIGN;211
14.1.3;CONCEPT OF PRODUCTION INSPECTION;213
14.1.4;TECHNOLOGY TRANSFER;214
14.2;CHAPTER 33. SUBSTANTIAL IMPROVEMENTS OF THE PERFORMANCE OF AXIAL WINDERS BY ADAPTIVE STATE SPACE CONTROL;216
14.2.1;ABSTRACT;216
14.2.2;KEYWORDS;216
14.2.3;INTRODUCTION;216
14.2.4;STATE OF THE ART OF THE WINDER CONTROL;217
14.2.5;PRINCIPLE CHARACTERISTICS OF THE ELECTRO-MECHANICAL SYSTEM;218
14.2.6;CONTROL STRATEGIES WITH A WEB FORCESENSOR;218
14.2.7;ADAPTIVE STATE SPACE CONTROL WITH OBSERVERS;219
14.2.8;EXPERIMENTAL RESULTS;220
14.2.9;CONCLUSION;221
14.2.10;REFERENCES;221
14.3;CHAPTER 34. FAULT-TOLERANT MICROPROCESSOR-BASEDCONTROL SYSTEM FOR MULTIPLE LIFTINSTALLATIONS;222
14.3.1;INTRODUCTION;222
14.3.2;MOTOR CONTROLLER;222
14.3.3;SYSTEM CONTROLLER;223
14.3.4;CAUSES OF FAILURE;224
14.3.5;SYSTEM COST;224
14.3.6;CONCLUSIONS;224
14.3.7;ACKNOWLEDGEMENT;225
14.3.8;REFERENCES;225
14.4;CHAPTER 35. DISTRIBUTED CONTROL SYSTEM FOR MACHINES IN MANUFACTURING;228
14.4.1;ABSTRACT;228
14.4.2;KEYWORDS;228
14.4.3;INTRODUCTION;228
14.4.4;NEW FEATURES;228
14.4.5;BASIC CONTROL UNITS;229
14.4.6;MAN-MACHINE INTERFACE UNIT;230
14.4.7;LOCAL-AREA CONTROL NETWORK;230
14.4.8;INDUSTRIAL APPLICATION;230
14.4.9;CONCLUSION;231
14.4.10;ACKNOWLEDGEMENTS;231
14.4.11;REFERENCES;231
14.5;CHAPTER 36. SELF-TUNING CROSS PROFILE CONTROL FOR A PAPER MACHINE;232
14.5.1;I. INTRODUCTION;232
14.5.2;II. PROCESS DESCRIPTION;232
14.5.3;III. PROCESS MODEL;233
14.5.4;IV. CONTROL STRATEGY;234
14.5.5;V. IDENTIFICATION;234
14.5.6;VI. STRUCTURE OF THE MULTIVARIABLE SELFTUNING CONTROL LOOP;235
14.5.7;VII. STABILITY ANALYSIS;235
14.5.8;VIII. CONTROL RESULTS;236
14.5.9;IX. COHCLUSIOHS;237
14.5.10;X. REFERENCES;237
15;PART 10: MACHINE TOOLS;238
15.1;CHAPTER 37. THE EXPERIMENTAL CLASSIFICATIONS OF THE LINEAR MODELS OF THE LATHE CUTTING MECHANISMS;238
15.2;Introduction;238
15.3;Problem Formulation;239
15.4;Experimental Set-up and Analysis;240
15.5;Conclusions and Future Study;241
15.6;References;241
15.7;CHAPTER 38. ADAPTIVE TRACKING ALGORITHMS AND THEIR APPLICATION TO A MACHINE-TOOL;244
15.7.1;1. INTRODUCTION;244
15.7.2;2. TRACKING ERROR PROBLEMS IN MACHINE-TOOLS;244
15.7.3;3. ALGORITHMS DESCRIPTION;245
15.7.4;4. TESTS AND RESULTS;246
15.7.5;5. CONCLUSION;247
15.7.6;REFERENCES;247
15.8;CHAPTER 39. MODELLING AND ANALYSIS OF A STEPPER MOTOR DRIVEN FEED-DRIVE SYSTEM OF A CNC LATHE;250
15.8.1;INTRODUCTION;250
15.8.2;MODELLING OF FEEDDRIVE SYSTEM;250
15.8.3;EFFECT OF SYSTEM PARAMETERS;251
15.8.4;PHYSICAL MODEL OF THE SYSTEM;251
15.8.5;MATHEMATICAL MODELOF THE SYSTEM;251
15.8.6;CONCLUSION;252
15.8.7;REFERENCES;252
15.9;CHAPTER 40. FAST POSITION CONTROL WITH MICROPROCESSOR FOR MACHINE TOOLS;256
15.9.1;INTRODUCTION;256
15.9.2;CONVENTIONAL CONTINUOUS CONTOUR CONTROL;257
15.9.3;CONTROL METHOD FOR THE REDUCTION OF THE CONTOURING ERROR;258
15.9.4;DIGITAL STATE CONTROLLER;258
15.9.5;RESULTS;259
15.9.6;OUTLOOK;260
15.9.7;REFERENCES;260
15.10;CHAPTER 41. PANTOGRAPH WITH MICROCOMPUTER;262
15.10.1;INTRODUCTION;262
15.10.2;OPERATING SYSTEM OF THE PANTOGRAPH;262
15.10.3;SOFTWARE;263
15.10.4;ALGORITHM FOR CHARACTER GENERATION;264
15.10.5;FORMAT FOR CHARACTER;264
15.10.6;HARDWARE;265
15.10.7;CONCLUSION;265
15.10.8;ACKNOWLEDGEMENT;265
15.11;CHAPTER 42. A LANGUAGE FOR CNC;266
15.11.1;INTRODUCTION;266
15.11.2;SYSTEM CAPABILITIES OF TEZDIL;267
15.11.3;EDITOR;267
15.11.4;INTERPRETER;269
15.11.5;POSTPROCESSOR;269
15.11.6;CONCLUSIONS;269
15.11.7;REFERANCE;269
16;AUTHOR INDEX;274
17;SUBJECT INDEX;276