Abraham / Pedrycz / Grosan | Engineering Evolutionary Intelligent Systems | Buch | 978-3-642-09466-8 | sack.de

Buch, Englisch, Band 82, 444 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 698 g

Reihe: Studies in Computational Intelligence

Abraham / Pedrycz / Grosan

Engineering Evolutionary Intelligent Systems


1. Auflage. Softcover version of original hardcover Auflage 2008
ISBN: 978-3-642-09466-8
Verlag: Springer

Buch, Englisch, Band 82, 444 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 698 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-642-09466-8
Verlag: Springer


Evolutionary design of intelligent systems is gaining much popularity due to its capabilities in handling several real world problems involving optimization, complexity, noisy and non-stationary environment, imprecision, uncertainty and vagueness. This edited volume 'Engineering Evolutionary Intelligent Systems' deals with the theoretical and methodological aspects, as well as various evolutionary algorithm applications to many real world problems originating from science, technology, business or commerce. This volume comprises of 15 chapters including an introductory chapter which covers the fundamental definitions and outlines some important research challenges. Chapters were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.

Abraham / Pedrycz / Grosan Engineering Evolutionary Intelligent Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Engineering Evolutionary Intelligent Systems: Methodologies, Architectures and Reviews.- Genetically Optimized Hybrid Fuzzy Neural Networks: Analysis and Design of Rule-based Multi-layer Perceptron Architectures.- Genetically Optimized Self-organizing Neural Networks Based on Polynomial and Fuzzy Polynomial Neurons: Analysis and Design.- Evolution of Inductive Self-organizing Networks.- Recursive Pattern based Hybrid Supervised Training.- Enhancing Recursive Supervised Learning Using Clustering and Combinatorial Optimization (RSL-CC).- Evolutionary Approaches to Rule Extraction from Neural Networks.- Cluster-wise Design of Takagi and Sugeno Approach of Fuzzy Logic Controller.- Evolutionary Fuzzy Modelling for Drug Resistant HIV-1 Treatment Optimization.- A New Genetic Approach for Neural Network Design.- A Grammatical Genetic Programming Representation for Radial Basis Function Networks.- A Neural-Genetic Technique for Coastal Engineering: Determining Wave-induced Seabed Liquefaction Depth.- On the Design of Large-scale Cellular Mobile Networks Using Multi-population Memetic Algorithms.- A Hybrid Cellular Genetic Algorithm for the Capacitated Vehicle Routing Problem.- Particle Swarm Optimization with Mutation for High Dimensional Problems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.