Abraham | Data Science for Genomics | Buch | 978-0-323-98352-5 | sack.de

Buch, Englisch, 300 Seiten, Format (B × H): 216 mm x 276 mm, Gewicht: 450 g

Abraham

Data Science for Genomics


Erscheinungsjahr 2022
ISBN: 978-0-323-98352-5
Verlag: William Andrew Publishing

Buch, Englisch, 300 Seiten, Format (B × H): 216 mm x 276 mm, Gewicht: 450 g

ISBN: 978-0-323-98352-5
Verlag: William Andrew Publishing


Data Science for Genomics presents the foundational concepts of data science as they pertain to genomics, encompassing the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, suggesting conclusions and supporting decision-making. Sections cover Data Science, Machine Learning, Deep Learning, data analysis, and visualization techniques. The authors then present the fundamentals of Genomics, Genetics, Transcriptomes and Proteomes as basic concepts of molecular biology, along with DNA and key features of the human genome, as well as the genomes of eukaryotes and prokaryotes.

Techniques that are more specifically used for studying genomes are then described in the order in which they are used in a genome project, including methods for constructing genetic and physical maps. DNA sequencing methodology and the strategies used to assemble a contiguous genome sequence and methods for identifying genes in a genome sequence and determining the functions of those genes in the cell. Readers will learn how the information contained in the genome is released and made available to the cell, as well as methods centered on cloning and PCR.

Abraham Data Science for Genomics jetzt bestellen!

Zielgruppe


<p>Academics (scientists, researchers, MSc. PhD. students) from the fields of Computer Science and Engineering, Biomedical Engineering, Biology, Chemistry, Genomics, and Information Technology. The audience also includes interested professionals-experts from both public and private industries of biomedical, genomics, computer science, data science, and information technology; The book may be used in Data Science, Medical, Biomedical, Artificial Intelligence, Machine Learning, Deep Learning oriented courses given at especially Health, Biology, Biomedical Engineering, Genetics or similar programs of universities, institutions.</p>


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction to Data Science
2. Toolboxes for Data Scientists
3. Machine Learning and Deep Learning: A Concise Overview
4. Artificial Intelligence
5. Data Privacy and Data Trust
6. Visual Data Analysis and Complex Data Analysis
7. Big Data programming with Apache Spark and Hadoop
8. Information Retrieval and Recommender Systems
9. Statistical Natural Language Processing for Sentiment Analysis
10. Parallel Computing and High-Performance Computing
11. Data Science, Genomics, Genomes, and Genetics
12. Blockchain Technology for securing Genomic data
13. Cloud, edge, fog, etc., for communicating and storing data for Genome
14. Open Issues, Challenges and Future Research Directions towards Data science and Genomics
15. Privacy Laws
16. Ethical Concerns
17. Self-study questions
18. Problem-based learning
19. Key Terms/ Glossary
20. Appendix - Keeping up to Date
21. Bibliography


Abraham, Ajith
Dr. Ajith Abraham is the Vice Chancellor at Sai University, Chennai. Before joining Sai University, he held the position of vice chancellor at prominent institutions and was also the founding director of Machine Intelligence Research Labs (MIR Labs), a non-profit scientific network for innovation and research excellence with headquarters in Seattle, USA. Dr. Abraham has completed research projects valued at over $110 million as an investigator or co-investigator from the United States, the European Union, Italy, the Czech Republic, France, Malaysia, China, and Australia. He has worked in a multidisciplinary setting for more than 35 years and has authored or co-authored more than 1,500+ research publications in artificial intelligence and related applications in the industry. A handful of his publications have been translated into Chinese and Russian, and one of his books has been translated into Japanese. The Scopus database has approximately 1,400 papers indexed, whereas the Thomson Web of Science has over 1,000 publications indexed.

In addition to other esteemed universities, Dr. Abraham has worked with researchers from MIT (USA), the University of Cambridge (UK), Harvard University (USA), and Oxford University (UK). According to Google Scholar, Dr. Abraham possesses over 63,000 scholarly citations with an H-index of over 118. He has delivered over 250 conference plenary talks and tutorials in more than 20 countries. From 2008 to 2021, Dr. Abraham chaired the IEEE Systems, Man, and Cybernetics Society Technical Committee on Soft Computing, which had more than 200 members. From 2011 to 2013, he represented Europe as a Distinguished Lecturer for the IEEE Computer Society (USA). Dr. Abraham is continuously listed in the Stanford/Elsevier list, highlighting the top 2% of the most cited scientists across the globe. Based on 2024 data, ScholarGPS listed Dr. Abraham as one of the world's top 0.01% cited scientists in the engineering and computer science fields.

From 2016 to 2021, Dr. Abraham worked as the chief editor of Engineering Applications of Artificial Intelligence (EAAI) at Elsevier, New York. EAAI is one of the oldest journals (founded in 1988) in the artificial intelligencedomain. Additionally, he sat on the editorial boards of more than 15 international journals indexed by Thomson ISI. Dr. Abraham received his Ph.D. degree in artificial intelligence from Monash University, Melbourne, Australia (2001), a Master of Science degree from Nanyang Technological University, Singapore (1998), and a B.Tech (Hons) degree from the University of Calicut in 1990.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.