Buch, Englisch, 293 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 476 g
Ill-Posed Problems and Regularization
Buch, Englisch, 293 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 476 g
Reihe: Advances in Computer Vision and Pattern Recognition
ISBN: 978-3-319-83501-3
Verlag: Springer International Publishing
Optimization plays a major role in a wide variety of theories for image processing and computer vision. Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Berechenbarkeitstheorie, Komplexitätstheorie
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
Weitere Infos & Material
Ill-Posed Problems in Imaging and Computer Vision.- Selection of the Regularization Parameter.- Introduction to Optimization.- Unconstrained Optimization.- Constrained Optimization.- Frequency-Domain Implementation of Regularization.- Iterative Methods.- Regularized Image Interpolation Based on Data Fusion.- Enhancement of Compressed Video.- Volumetric Description of Three-Dimensional Objects for Object Recognition.- Regularized 3D Image Smoothing.- Multi-Modal Scene Reconstruction Using Genetic Algorithm-Based Optimization.- Appendix A: Matrix-Vector Representation for Signal Transformation.- Appendix B: Discrete Fourier Transform.- Appendix C: 3D Data Acquisition and Geometric Surface Reconstruction.- Appendix D: Mathematical Appendix.- Index.