Abhishek / Abdelaziz | Machine Learning for Imbalanced Data | E-Book | sack.de
E-Book

E-Book, Englisch, 344 Seiten

Abhishek / Abdelaziz Machine Learning for Imbalanced Data

Tackle imbalanced datasets using machine learning and deep learning techniques
1. Auflage 2023
ISBN: 978-1-80107-088-1
Verlag: Packt Publishing
Format: EPUB
Kopierschutz: 0 - No protection

Tackle imbalanced datasets using machine learning and deep learning techniques

E-Book, Englisch, 344 Seiten

ISBN: 978-1-80107-088-1
Verlag: Packt Publishing
Format: EPUB
Kopierschutz: 0 - No protection



As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance.

Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods.

As you progress, you'll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that'll demonstrate the practical implementation of each technique.

By the end of this book, you'll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models.

Abhishek / Abdelaziz Machine Learning for Imbalanced Data jetzt bestellen!


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.