Abe | Support Vector Machines for Pattern Classification | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 473 Seiten

Reihe: Advances in Computer Vision and Pattern Recognition

Abe Support Vector Machines for Pattern Classification


2. Auflage 2010
ISBN: 978-1-84996-098-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 473 Seiten

Reihe: Advances in Computer Vision and Pattern Recognition

ISBN: 978-1-84996-098-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.

Abe Support Vector Machines for Pattern Classification jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Acknowledgments;12
3;Contents;14
4;Symbols;20
5;1 Introduction;21
5.1;1.1 Decision Functions;22
5.1.1;1.1.1 Decision Functions for Two-Class Problems;22
5.1.2;1.1.2 Decision Functions for Multiclass Problems;24
5.2;1.2 Determination of Decision Functions;28
5.3;1.3 Data Sets Used in the Book;29
5.4;1.4 Classifier Evaluation;33
5.5;References;36
6;2 Two-Class Support Vector Machines;40
6.1;2.1 Hard-Margin Support Vector Machines;40
6.2;2.2 L1 Soft-Margin Support Vector Machines;47
6.3;2.3 Mapping to a High-Dimensional Space;50
6.3.1;2.3.1 Kernel Tricks;50
6.3.2;2.3.2 Kernels;52
6.3.3;2.3.3 Normalizing Kernels;62
6.3.4;2.3.4 Properties of Mapping Functions Associated with Kernels;63
6.3.5;2.3.5 Implicit Bias Terms;66
6.3.6;2.3.6 Empirical Feature Space;69
6.4;2.4 L2 Soft-Margin Support Vector Machines;75
6.5;2.5 Advantages and Disadvantages;77
6.5.1;2.5.1 Advantages;77
6.5.2;2.5.2 Disadvantages;78
6.6;2.6 Characteristics of Solutions;79
6.6.1;2.6.1 Hessian Matrix;79
6.6.2;2.6.2 Dependence of Solutions on C;81
6.6.3;2.6.3 Equivalence of L1 and L2 Support Vector Machines;86
6.6.4;2.6.4 Nonunique Solutions;89
6.6.5;2.6.5 Reducing the Number of Support Vectors;97
6.6.6;2.6.6 Degenerate Solutions;100
6.6.7;2.6.7 Duplicate Copies of Data;102
6.6.8;2.6.8 Imbalanced Data;104
6.6.9;2.6.9 Classification for the Blood Cell Data;104
6.7;2.7 Class Boundaries for Different Kernels;107
6.8;2.8 Developing Classifiers;112
6.8.1;2.8.1 Model Selection;112
6.8.2;2.8.2 Estimating Generalization Errors;112
6.8.3;2.8.3 Sophistication of Model Selection;116
6.8.4;2.8.4 Effect of Model Selection by Cross-Validation;117
6.9;2.9 Invariance for Linear Transformation;121
6.10;References;125
7;3 Multiclass Support Vector Machines;132
7.1;3.1 One-Against-All Support Vector Machines;133
7.1.1;3.1.1 Conventional Support Vector Machines;133
7.1.2;3.1.2 Fuzzy Support Vector Machines;135
7.1.3;3.1.3 Equivalence of Fuzzy Support Vector Machines and Support Vector Machines with Continuous Decision Functions;138
7.1.4;3.1.4 Decision-Tree-Based Support Vector Machines;141
7.2;3.2 Pairwise Support Vector Machines;146
7.2.1;3.2.1 Conventional Support Vector Machines;146
7.2.2;3.2.2 Fuzzy Support Vector Machines;147
7.2.3;3.2.3 Performance Comparison of Fuzzy Support Vector Machines;148
7.2.4;3.2.4 Cluster-Based Support Vector Machines;151
7.2.5;3.2.5 Decision-Tree-Based Support Vector Machines;152
7.2.6;3.2.6 Pairwise Classification with Correcting Classifiers;162
7.3;3.3 Error-Correcting Output Codes;163
7.3.1;3.3.1 Output Coding by Error-Correcting Codes;164
7.3.2;3.3.2 Unified Scheme for Output Coding;165
7.3.3;3.3.3 Equivalence of ECOC with Membership Functions;166
7.3.4;3.3.4 Performance Evaluation;166
7.4;3.4 All-at-Once Support Vector Machines;168
7.5;3.5 Comparisons of Architectures;171
7.5.1;3.5.1 One-Against-All Support Vector Machines;171
7.5.2;3.5.2 Pairwise Support Vector Machines;171
7.5.3;3.5.3 ECOC Support Vector Machines;172
7.5.4;3.5.4 All-at-Once Support Vector Machines;172
7.5.5;3.5.5 Training Difficulty;172
7.5.6;3.5.6 Training Time Comparison;176
7.6;References;177
8;4 Variants of Support Vector Machines;181
8.1;4.1 Least-Squares Support Vector Machines;181
8.1.1;4.1.1 Two-Class Least-Squares Support Vector Machines;182
8.1.2;4.1.2 One-Against-All Least-Squares Support Vector Machines;184
8.1.3;4.1.3 Pairwise Least-Squares Support Vector Machines;186
8.1.4;4.1.4 All-at-Once Least-Squares Support Vector Machines;187
8.1.5;4.1.5 Performance Comparison;188
8.2;4.2 Linear Programming Support Vector Machines;192
8.2.1;4.2.1 Architecture;193
8.2.2;4.2.2 Performance Evaluation;196
8.3;4.3 Sparse Support Vector Machines;198
8.3.1;4.3.1 Several Approaches for Sparse SupportVector Machines;199
8.3.2;4.3.2 Idea;201
8.3.3;4.3.3 Support Vector Machines Trained in the Empirical Feature Space;202
8.3.4;4.3.4 Selection of Linearly Independent Data;205
8.3.5;4.3.5 Performance Evaluation;207
8.4;4.4 Performance Comparison of Different Classifiers;210
8.5;4.5 Robust Support Vector Machines;214
8.6;4.6 Bayesian Support Vector Machines;215
8.6.1;4.6.1 One-Dimensional Bayesian Decision Functions;217
8.6.2;4.6.2 Parallel Displacement of a Hyperplane;218
8.6.3;4.6.3 Normal Test;219
8.7;4.7 Incremental Training;219
8.7.1;4.7.1 Overview;219
8.7.2;4.7.2 Incremental Training Using Hyperspheres;222
8.8;4.8 Learning Using Privileged Information;231
8.9;4.9 Semi-Supervised Learning;234
8.10;4.10 Multiple Classifier Systems;235
8.11;4.11 Multiple Kernel Learning;236
8.12;4.12 Confidence Level;237
8.13;4.13 Visualization;238
8.14;References;238
9;5 Training Methods;245
9.1;5.1 Preselecting Support Vector Candidates;245
9.1.1;5.1.1 Approximation of Boundary Data;246
9.1.2;5.1.2 Performance Evaluation;248
9.2;5.2 Decomposition Techniques;249
9.3;5.3 KKT Conditions Revisited;252
9.4;5.4 Overview of Training Methods;257
9.5;5.5 Primal--Dual Interior-Point Methods;260
9.5.1;5.5.1 Primal--Dual Interior-Point Methods for Linear Programming;260
9.5.2;5.5.2 Primal--Dual Interior-Point Methods for Quadratic Programming;264
9.5.3;5.5.3 Performance Evaluation;266
9.6;5.6 Steepest Ascent Methods and Newton's Methods;270
9.6.1;5.6.1 Solving Quadratic Programming Problems Without Constraints;270
9.6.2;5.6.2 Training of L1 Soft-Margin Support Vector Machines;272
9.6.3;5.6.3 Sequential Minimal Optimization;277
9.6.4;5.6.4 Training of L2 Soft-Margin Support Vector Machines;278
9.6.5;5.6.5 Performance Evaluation;279
9.7;5.7 Batch Training by Exact Incremental Training;280
9.7.1;5.7.1 KKT Conditions;281
9.7.2;5.7.2 Training by Solving a Set of Linear Equations;282
9.7.3;5.7.3 Performance Evaluation;290
9.8;5.8 Active Set Training in Primal and Dual;291
9.8.1;5.8.1 Training Support Vector Machines in the Primal;291
9.8.2;5.8.2 Comparison of Training Support Vector Machines in the Primal and the Dual;294
9.8.3;5.8.3 Performance Evaluation;297
9.9;5.9 Training of Linear Programming Support Vector Machines;299
9.9.1;5.9.1 Decomposition Techniques;300
9.9.2;5.9.2 Decomposition Techniques for Linear Programming Support Vector Machines;307
9.9.3;5.9.3 Computer Experiments;315
9.10;References;317
10;6 Kernel-Based Methods;322
10.1;6.1 Kernel Least Squares;322
10.1.1;6.1.1 Algorithm;322
10.1.2;6.1.2 Performance Evaluation;325
10.2;6.2 Kernel Principal Component Analysis;328
10.3;6.3 Kernel Mahalanobis Distance;331
10.3.1;6.3.1 SVD-Based Kernel Mahalanobis Distance;332
10.3.2;6.3.2 KPCA-Based Mahalanobis Distance;335
10.4;6.4 Principal Component Analysis in the EmpiricalFeature Space;336
10.5;6.5 Kernel Discriminant Analysis;337
10.5.1;6.5.1 Kernel Discriminant Analysis for Two-Class Problems;338
10.5.2;6.5.2 Linear Discriminant Analysis for Two-Class Problems in the Empirical Feature Space;341
10.5.3;6.5.3 Kernel Discriminant Analysis for Multiclass Problems;342
10.6;References;344
11;7 Feature Selection and Extraction;347
11.1;7.1 Selecting an Initial Set of Features;347
11.2;7.2 Procedure for Feature Selection;348
11.3;7.3 Feature Selection Using Support Vector Machines;349
11.3.1;7.3.1 Backward or Forward Feature Selection;349
11.3.2;7.3.2 Support Vector Machine-Based Feature Selection;352
11.3.3;7.3.3 Feature Selection by Cross-Validation;353
11.4;7.4 Feature Extraction;355
11.5;References;356
12;8 Clustering;358
12.1;8.1 Domain Description;358
12.2;8.2 Extension to Clustering;364
12.3;References;366
13;9 Maximum-Margin Multilayer Neural Networks;368
13.1;9.1 Approach;368
13.2;9.2 Three-Layer Neural Networks;369
13.3;9.3 CARVE Algorithm;372
13.4;9.4 Determination of Hidden-Layer Hyperplanes;373
13.4.1;9.4.1 Rotation of Hyperplanes;374
13.4.2;9.4.2 Training Algorithm;377
13.5;9.5 Determination of Output-Layer Hyperplanes;378
13.6;9.6 Determination of Parameter Values;378
13.7;9.7 Performance Evaluation;379
13.8;References;380
14;10 Maximum-Margin Fuzzy Classifiers;382
14.1;10.1 Kernel Fuzzy Classifiers with Ellipsoidal Regions;383
14.1.1;10.1.1 Conventional Fuzzy Classifiers withEllipsoidal Regions;383
14.1.2;10.1.2 Extension to a Feature Space;384
14.1.3;10.1.3 Transductive Training;385
14.1.4;10.1.4 Maximizing Margins;390
14.1.5;10.1.5 Performance Evaluation;393
14.2;10.2 Fuzzy Classifiers with Polyhedral Regions;397
14.2.1;10.2.1 Training Methods;398
14.2.2;10.2.2 Performance Evaluation;406
14.3;References;408
15;11 Function Approximation;410
15.1;11.1 Optimal Hyperplanes;410
15.2;11.2 L1 Soft-Margin Support Vector Regressors;414
15.3;11.3 L2 Soft-Margin Support Vector Regressors;416
15.4;11.4 Model Selection;418
15.5;11.5 Training Methods;418
15.5.1;11.5.1 Overview;418
15.5.2;11.5.2 Newton's Methods;420
15.5.3;11.5.3 Active Set Training;437
15.6;11.6 Variants of Support Vector Regressors;444
15.6.1;11.6.1 Linear Programming Support Vector Regressors;445
15.6.2;11.6.2 -Support Vector Regressors;446
15.6.3;11.6.3 Least-Squares Support Vector Regressors;447
15.7;11.7 Variable Selection;450
15.7.1;11.7.1 Overview;450
15.7.2;11.7.2 Variable Selection by Block Deletion;451
15.7.3;11.7.3 Performance Evaluation;452
15.8;References;453
16;A Conventional Classifiers;458
16.1;A.1 Bayesian Classifiers;458
16.2;A.2 Nearest-Neighbor Classifiers;459
16.3;References;460
17;B Matrices;462
17.1;B.1 Matrix Properties;462
17.2;B.2 Least-Squares Methods and Singular Value Decomposition;464
17.3;B.3 Covariance Matrices;467
17.4;References;469
18;C Quadratic Programming;470
18.1;C.1 Optimality Conditions;470
18.2;C.2 Properties of Solutions;471
19;D Positive Semidefinite Kernels and Reproducing Kernel Hilbert Space;474
19.1;D.1 Positive Semidefinite Kernels;474
19.2;D.2 Reproducing Kernel Hilbert Space;478
19.3;References;480
20;Index;482



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.