Neuro-fuzzy Methods and Their Comparison
Buch, Englisch, 327 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1480 g
ISBN: 978-1-85233-352-2
Verlag: Springer
The book consists of two parts: Pattern Classification and Function Approximation. In the first part, based on the synthesis principle of the neural-network classifier: A new learning paradigm is discussed and classification performance and training time of the new paradigm for several real-world data sets are compared with those of the widely-used back-propagation algorithm; Fuzzy classifiers of different architectures based on fuzzy rules can be defined with hyperbox, polyhedral, or ellipsoidal regions. The book discusses the unified approach for training these fuzzy classifiers; The performance of the newly-developed fuzzy classifiers and the conventional classifiers such as nearest-neighbor classifiers and support vector machines are evaluated using several real-world data sets and their advantages and disadvantages are clarified.
In the second part: Function approximation is discussed extending the discussions in the first part; Performance of the function approximators is compared.
This book is aimed primarily at researchers and practitioners in the field of artificial intelligence and neural networks.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Fuzzy-Systeme
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
Weitere Infos & Material
I. Pattern Classification.- 1. Introduction.- 2. Multilayer Neural Network Classifiers.- 3. Support Vector Machines.- 4. Membership Functions.- 5. Static Fuzzy Rule Generation.- 6. Clustering.- 7. Tuning of Membership Functions.- 8. Robust Pattern Classification.- 9. Dynamic Fuzzy Rule Generation.- 10. Comparison of Classifier Performance.- 11. Optimizing Features.- 12. Generation of Training and Test Data Sets.- II. Function Approximation.- 13. Introduction.- 14. Fuzzy Rule Representation and Inference.- 15. Fuzzy Rule Generation.- 16. Robust Function Approximation.- III. Appendices.- A. Conventional Classifiers.- A.1 Bayesian Classifiers.- A.2 Nearest Neighbor Classifiers.- A.2.1 Classifier Architecture.- A.2.2 Performance Evaluation.- B. Matrices.- B.1 Matrix Properties.- B.2 Least-squares Method and Singular Value Decomposition.- B.3 Covariance Matrix.- References.