Buch, Englisch, 248 Seiten, Format (B × H): 156 mm x 234 mm
Buch, Englisch, 248 Seiten, Format (B × H): 156 mm x 234 mm
ISBN: 978-1-032-89752-3
Verlag: Taylor & Francis Ltd
Tiny Machine Learning Techniques for Constrained Devices explores the cutting-edge field of TinyML, enabling intelligent machine learning on highly resource-limited devices such as microcontrollers and edge IoT nodes. This book provides a comprehensive guide to designing, optimizing, securing, and applying TinyML models in real-world constrained environments.
The book offers thorough coverage of key topics, including:
- Foundations and Optimization of TinyML: Covers microcontroller-centric power optimization, core principles, and algorithms essential for deploying efficient machine learning models on embedded systems with strict resource constraints.
- Applications of TinyML in Healthcare and IoT: Presents innovative use cases such as compact AI solutions for healthcare challenges, real-time detection systems, and integration with low-power IoT and LPWAN technologies.
- Security and Privacy in TinyML: Addresses the unique challenges of securing TinyML deployments, including privacy-preserving techniques, blockchain integration for secure IoT applications, and methods for protecting resource-constrained devices.
- Emerging Trends and Future Directions: Explores the evolving landscape of TinyML research, highlighting new applications, adaptive frameworks, and promising avenues for future investigation.
- Practical Implementation and Case Studies: Offers hands-on insights and real-world examples demonstrating TinyML in action across diverse scenarios, providing guidance for engineers, researchers, and students.
This book is an essential resource for embedded system designers, AI practitioners, cybersecurity professionals, and academics who want to harness the power of TinyML for smarter, more efficient, and secure edge intelligence solutions.
Zielgruppe
Academic and Postgraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Digital Lifestyle Mobiltelefone
- Mathematik | Informatik EDV | Informatik Digital Lifestyle Handheld, Smartphone, Tablet
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Sensorik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Neuronale Netzwerke
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Handheld Programmierung
Weitere Infos & Material
1. Microcontroller-Centric Power Optimization in Embedded Systems 2. Core Principles and Algorithms for Tiny Machine Learning 3. TinyML and Edge AI for Low-Power IoT and LPWAN Applications 4. Efficient Real-Time Mask Detection Using TinyML 5. TinyML for Smarter Healthcare: Compact AI Solutions for Medical Challenges 6. Adaptive Energy Modeling and Communication Optimization for LoRaWAN-Based IoT Networks 7. Security and Privacy in TinyML Applications 8. Secure Tiny Machine Learning on Resource-Constrained IoT Devices 9. Integrating TinyML with Blockchain for Secure IoT Applications 10. TinyML: Emerging Applications and Future Research Directions