E-Book, Englisch, 473 Seiten
A Rosen / Dincer Exergy
1. Auflage 2007
ISBN: 978-0-08-053135-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Energy, Environment and Sustainable Development
E-Book, Englisch, 473 Seiten
ISBN: 978-0-08-053135-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
This book deals with exergy and its applications to various energy systems and applications as a potential tool for design, analysis and optimization, and its role in minimizing and/or eliminating environmental impacts and providing sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered as outlined in the contents.
- Comprehensive coverage of exergy and its applications
- Connects exergy with three essential areas in terms of energy, environment and sustainable development
- Presents the most up-to-date information in the area with recent developments
- Provides a number of illustrative examples, practical applications, and case studies
- Easy to follow style, starting from the basics to the advanced systems
Ibrahim Dincer is the Editor-in-Chief of four journals, including the International Journal of Energy Research and International Journal of Exergy. He has authored numerous books and many journal articles, and is the recipient of several awards. He has most recently been recognized as one of 2014's Most Influential Scientific Minds in Engineering. This honour, presented by Thomson Reuters, is given to researchers who rank among the top 1% most cited for their subject field and year of publication, earning the mark of exceptional impact. Currently, he is a Professor with the Department of Automotive, Mechanical and Manufacturing Engineering of Faculty of Engineering and Applied Science at the University of Ontario Institute of Technology
Autoren/Hrsg.
Weitere Infos & Material
1;FRONT COVER;1
2;EXERGY: ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT;4
3;COPYRIGHT PAGE;5
4;TABLE OF CONTENTS;10
5;PREFACE;6
6;ACKNOWLEDGMENTS;8
7;ABOUT THE AUTHORS;9
8;CHAPTER 1. THERMODYNAMIC FUNDAMENTALS;20
8.1;1.1. Introduction;20
8.2;1.2. Energy;20
8.2.1;1.2.1. Applications of energy;20
8.2.2;1.2.2. Concept of energy;21
8.2.3;1.2.3. Forms of energy;21
8.2.4;1.2.4. The first law of thermodynamics;22
8.2.5;1.2.5. Energy and the FLT;23
8.2.6;1.2.6. Economic aspects of energy;23
8.2.7;1.2.7. Energy audit methods;24
8.2.8;1.2.8. Energy management;24
8.3;1.3. Entropy;25
8.3.1;1.3.1. Order and disorder and reversibility and irreversibility;25
8.3.2;1.3.2. Characteristics of entropy;26
8.3.3;1.3.3. Significance of entropy;27
8.3.4;1.3.4. Carnot's contribution;28
8.3.5;1.3.5. The second law of thermodynamics;28
8.3.6;1.3.6. SLT statements;29
8.3.7;1.3.7. The Clausius inequality;29
8.3.8;1.3.8. Useful relationships;30
8.4;1.4. Exergy;30
8.4.1;1.4.1. The quantity exergy;30
8.4.2;1.4.2. Exergy analysis;30
8.4.3;1.4.3. Characteristics of exergy;31
8.4.4;1.4.4. The reference environment;31
8.4.5;1.4.5. Exergy vs. energy;32
8.4.6;1.4.6. Exergy efficiencies;33
8.4.7;1.4.7. Solar exergy and the earth;33
8.5;1.5. Illustrative examples;34
8.5.1;1.5.1. Illustrative example 1;34
8.5.2;1.5.2. Illustrative example 2;35
8.5.3;1.5.3. Illustrative example 3;36
8.5.4;1.5.4. Illustrative example 4;38
8.6;1.6. Closing remarks;40
8.7;Problems;40
9;CHAPTER 2. EXERGY AND ENERGY ANALYSES;42
9.1;2.1. Introduction;42
9.2;2.2. Why energy and exergy analyses?;42
9.3;2.3. Nomenclature;43
9.4;2.4. Balances for mass, energy and entropy;43
9.4.1;2.4.1. Conceptual balances;43
9.4.2;2.4.2. Detailed balances;43
9.5;2.5. Exergy of systems and flows;45
9.5.1;2.5.1. Exergy of a closed system;45
9.5.2;2.5.2. Exergy of flows;46
9.6;2.6. Exergy consumption;47
9.7;2.7. Exergy balance;47
9.8;2.8. Reference environment;48
9.8.1;2.8.1. Theoretical characteristics of the reference environment;48
9.8.2;2.8.2. Models for the reference environment;48
9.9;2.9. Efficiencies and other measures of merit;50
9.10;2.10. Procedure for energy and exergy analyses;51
9.11;2.11. Energy and exergy properties;51
9.12;2.12. Implications of results of exergy analyses;52
9.13;2.13. Closing remarks;53
9.14;Problems;53
10;CHAPTER 3. EXERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT;55
10.1;3.1. Introduction;55
10.2;3.2. Exergy and environmental problems;56
10.2.1;3.2.1. Environmental concerns;56
10.2.2;3.2.2. Potential solutions to environmental problems;59
10.2.3;3.2.3. Energy and environmental impact;61
10.2.4;3.2.4. Thermodynamics and the environment;61
10.3;3.3. Exergy and sustainable development;64
10.3.1;3.3.1. Sustainable development;64
10.3.2;3.3.2. Sustainability and its need;64
10.3.3;3.3.3. Dimensions of sustainability;65
10.3.4;3.3.4. Environmental limits and geographic scope;66
10.3.5;3.3.5. Environmental, social and economic components of sustainability;66
10.3.6;3.3.6. Industrial ecology and resource conservation;66
10.3.7;3.3.7. Energy and sustainable development;68
10.3.8;3.3.8. Energy and environmental sustainability;68
10.3.9;3.3.9. Exergy and sustainability;68
10.3.10;3.3.10. Exergetic aspects of sustainable processes;70
10.3.11;3.3.11. Renewables and tools for sustainable development;70
10.3.12;3.3.12. Exergy as a common sustainability quantifier for process factors;74
10.4;3.4. Illustrative example;75
10.4.1;3.4.1. Implications regarding exergy and energy;76
10.4.2;3.4.2. Implications regarding exergy and the environment;77
10.4.3;3.4.3. Implications regarding exergy and sustainable development;77
10.5;3.5. Closing remarks;77
10.6;Problems;78
11;CHAPTER 4. APPLICATIONS OF EXERGY IN INDUSTRY;79
11.1;4.1. Introduction;79
11.2;4.2. Questions surrounding industry's use of exergy;80
11.3;4.3. Advantages and benefits of using exergy;80
11.3.1;4.3.1. Understanding thermodynamic efficiencies and losses through exergy;81
11.3.2;4.3.2. Efficiency;81
11.3.3;4.3.3. Loss;82
11.3.4;4.3.4. Examples;82
11.3.5;4.3.5. Discussion;83
11.4;4.4. Understanding energy conservation through exergy;83
11.4.1;4.4.1. What do we mean by energy conservation?;83
11.4.2;4.4.2. Exergy conservation;84
11.4.3;4.4.3. Examples;84
11.5;4.5. Disadvantages and drawbacks of using exergy;85
11.6;4.6. Possible measures to increase applications of exergy in industry;85
11.7;4.7. Closing remarks;86
11.8;Problems;86
12;CHAPTER 5. EXERGY IN POLICY DEVELOPMENT AND EDUCATION;87
12.1;5.1. Introduction;87
12.2;5.2. Exergy methods for analysis and design;87
12.3;5.3. The role and place for exergy in energy-related education and awareness policies;89
12.3.1;5.3.1. Public understanding and awareness of energy;89
12.3.2;5.3.2. Public understanding and awareness of exergy;89
12.3.3;5.3.3. Extending the public's need to understand and be aware of exergy to government and the media;90
12.4;5.4. The role and place for exergy in education policies;90
12.4.1;5.4.1. Education about exergy;90
12.4.2;5.4.2. The need for exergy literacy in scientists and engineers;91
12.4.3;5.4.3. Understanding the second law through exergy;91
12.4.4;5.4.4. Exergy's place in a curriculum;92
12.5;5.5. Closing remarks;93
12.6;Problems;94
13;CHAPTER 6. EXERGY ANALYSIS OF PSYCHROMETRIC PROCESSES;95
13.1;6.1. Basic psychrometric concepts;95
13.2;6.2. Balance equations for air-conditioning processes;97
13.3;6.3. Case study: exergy analysis of an open-cycle desiccant cooling system;101
13.3.1;6.3.1. Introduction;101
13.3.2;6.3.2. Operation and design of experimental system;101
13.3.3;6.3.3. Energy analysis;103
13.3.4;6.3.4. Exergy analysis;103
13.3.5;6.3.5. Results and discussion;106
13.4;6.4. Closing remarks;108
13.5;Problems;108
14;CHAPTER 7. EXERGY ANALYSIS OF HEAT PUMP SYSTEMS;110
14.1;7.1. Introduction;110
14.2;7.2. System description;112
14.3;7.3. General analysis;113
14.4;7.4. System exergy analysis;114
14.5;7.5. Results and discussion;117
14.6;7.6. Concluding remarks;117
14.7;Problems;121
15;CHAPTER 8. EXERGY ANALYSIS OF DRYING PROCESSES AND SYSTEMS;122
15.1;8.1. Introduction;122
15.2;8.2. Exergy losses associated with drying;123
15.3;8.3. Analysis;124
15.3.1;8.3.1. Balances;124
15.3.2;8.3.2. Exergy efficiency;125
15.4;8.4. Importance of matching supply and end-use heat for drying;126
15.5;8.5. Illustrative example;126
15.5.1;8.5.1. Approach;126
15.5.2;8.5.2. Results;126
15.5.3;8.5.3. Discussion;129
15.6;8.6. Energy analysis of fluidized bed drying of moist particles;131
15.6.1;8.6.1. Fluidized bed drying;131
15.6.2;8.6.2. Thermodynamic model and balances;133
15.6.3;8.6.3. Efficiencies for fluidized bed drying;135
15.6.4;8.6.4. Effects of varying process parameters;136
15.6.5;8.6.5. Example;136
15.7;8.7. Concluding remarks;145
15.8;Problems;145
16;CHAPTER 9. EXERGY ANALYSIS OF THERMAL ENERGY STORAGE SYSTEMS;146
16.1;9.1. Introduction;146
16.2;9.2. Principal thermodynamic considerations in TES;147
16.3;9.3. Exergy evaluation of a closed TES system;148
16.3.1;9.3.1. Analysis of the overall processes;148
16.3.2;9.3.2. Analysis of subprocesses;150
16.3.3;9.3.3. Implications for subprocesses and overall process;152
16.4;9.4. Relations between temperature and efficiency for sensible TES;153
16.4.1;9.4.1. Model and analysis;153
16.4.2;9.4.2. Efficiencies and their dependence on temperature;154
16.5;9.5. Exergy analysis of thermally stratified storages;156
16.5.1;9.5.1. General stratified TES energy and exergy expressions;156
16.5.2;9.5.2. Temperature-distribution models and relevant expressions;158
16.5.3;9.5.3. Increasing TES exergy storage capacity using stratification;161
16.6;9.6. Energy and exergy analyses of cold TES systems;164
16.6.1;9.6.1. Energy balances;165
16.6.2;9.6.2. Exergy balances;167
16.6.3;9.6.3. Efficiencies;167
16.7;9.7. Exergy analysis of aquifer TES systems;168
16.7.1;9.7.1. ATES model;168
16.7.2;9.7.2. Energy and exergy analyses;169
16.8;9.8. Examples and case studies;171
16.8.1;9.8.1. Inappropriateness of energy efficiency for TES evaluation;171
16.8.2;9.8.2. Comparing thermal storages;171
16.8.3;9.8.3. Thermally stratified TES;174
16.8.4;9.8.4. Cold TES;175
16.8.5;9.8.5. Aquifer TES;178
16.9;9.9. Concluding remarks;181
16.10;Problems;181
17;CHAPTER 10. EXERGY ANALYSIS OF RENEWABLE ENERGY SYSTEMS;182
17.1;10.1. Exergy analysis of solar photovoltaic systems;182
17.1.1;10.1.1. PV performance and efficiencies;183
17.1.2;10.1.2. Physical exergy;183
17.1.3;10.1.3. Chemical exergy;184
17.1.4;10.1.4. Illustrative example;186
17.1.5;10.1.5. Closure;186
17.2;10.2. Exergy analysis of solar ponds;186
17.2.1;10.2.1. Solar ponds;188
17.2.2;10.2.2. Experimental data for a solar pond;189
17.2.3;10.2.3. Energy analysis;191
17.2.4;10.2.4. Exergy analysis;199
17.2.5;10.2.5. Closure;204
17.3;10.3. Exergy analysis of wind energy systems;206
17.3.1;10.3.1. Wind energy systems;207
17.3.2;10.3.2. Energy and exergy analyses of wind energy aspects;208
17.3.3;10.3.3. Case study;211
17.3.4;10.3.4. Spatio-temporal wind exergy maps;215
17.3.5;10.3.5. Closure;223
17.4;10.4. Exergy analysis of geothermal energy systems;224
17.4.1;10.4.1. Case study 1: energy and exergy analyses of a geothermal district heating system;226
17.4.2;10.4.2. Case study 2: exergy analysis of a dual-level binary geothermal power plant;236
17.5;10.5. Closing remarks;245
17.6;Problems;246
18;CHAPTER 11. EXERGY ANALYSIS OF STEAM POWER PLANTS;248
18.1;11.1. Introduction;248
18.2;11.2. Analysis;249
18.2.1;11.2.1. Balances;249
18.2.2;11.2.2. Overall efficiencies;250
18.2.3;11.2.3. Material energy and exergy values;250
18.3;11.3. Spreadsheet calculation approaches;252
18.4;11.4. Example: analysis of a coal steam power plant;254
18.5;11.5. Example: impact on power plant efficiencies of varying boiler temperature and pressure;254
18.6;11.6. Case study: energy and exergy analyses of coal-fired and nuclear steam power plants;257
18.6.1;11.6.1. Process descriptions;258
18.6.2;11.6.2. Approach;264
18.6.3;11.6.3. Analysis;264
18.6.4;11.6.4. Results;265
18.6.5;11.6.5. Discussion;267
18.7;11.7. Improving steam power plant efficiency;271
18.7.1;11.7.1. Exergy-related techniques;271
18.7.2;11.7.2. Computer-aided design, analysis and optimization;272
18.7.3;11.7.3. Maintenance and control;272
18.7.4;11.7.4. Steam generator improvements;272
18.7.5;11.7.5. Condenser improvements;273
18.7.6;11.7.6. Reheating improvements;273
18.7.7;11.7.7. Regenerative feedwater heating improvements;274
18.7.8;11.7.8. Improving other plant components;274
18.8;11.8. Closing remarks;275
18.9;Problems;275
19;CHAPTER 12. EXERGY ANALYSIS OF COGENERATION AND DISTRICT ENERGY SYSTEMS;276
19.1;12.1. Introduction;276
19.2;12.2. Cogeneration;277
19.3;12.3. District energy;278
19.4;12.4. Integrated systems for cogeneration and district energy;279
19.5;12.5. Simplified illustrations of the benefits of cogeneration;280
19.5.1;12.5.1. Energy impacts;280
19.5.2;12.5.2. Energy and exergy efficiencies;282
19.5.3;12.5.3. Impact of cogeneration on environmental emissions;283
19.5.4;12.5.4. Further discussion;284
19.6;12.6. Case study for cogeneration-based district energy;284
19.6.1;12.6.1. System description;284
19.6.2;12.6.2. Approach and data;286
19.6.3;12.6.3. Preliminary analysis;286
19.6.4;12.6.4. Analysis of components;287
19.6.5;12.6.5. Analysis of overall system;291
19.6.6;12.6.6. Effect of inefficiencies in thermal transport;291
19.6.7;12.6.7. Analyses of multi-component subsystems;291
19.6.8;12.6.8. Results;291
19.6.9;12.6.9. Discussion;293
19.7;12.7. Closing remarks;294
19.8;Problems;295
20;CHAPTER 13. EXERGY ANALYSIS OF CRYOGENIC SYSTEMS;296
20.1;13.1. Introduction;296
20.2;13.2. Energy and exergy analyses of gas liquefaction systems;296
20.3;13.3. Exergy analysis of a multistage cascade refrigeration cycle for natural gas liquefaction;300
20.3.1;13.3.1. Background;300
20.3.2;13.3.2. Description of the cycle;300
20.3.3;13.3.3. Exergy analysis;301
20.3.4;13.3.4. Minimum work for the liquefaction process;304
20.3.5;13.3.5. Discussion;307
20.4;13.4. Closing remarks;307
20.5;Problems;307
21;CHAPTER 14. EXERGY ANALYSIS OF CRUDE OIL DISTILLATION SYSTEMS;309
21.1;14.1. Introduction;309
21.2;14.2. Analysis approach and assumptions;310
21.3;14.3. Description of crude oil distillation system analyzed;310
21.3.1;14.3.1. Overall system;310
21.3.2;14.3.2. System components;311
21.4;14.4. System simulation;313
21.5;14.5. Energy and exergy analyses;313
21.5.1;14.5.1. Crude heating furnace;313
21.5.2;14.5.2. Atmospheric distillation unit;314
21.5.3;14.5.3. Overall exergy efficiency;315
21.6;14.6. Results and discussion;315
21.6.1;14.6.1. Simulation results;315
21.6.2;14.6.2. Energy and exergy results;315
21.6.3;14.6.3. Impact of operating parameter variations;317
21.6.4;14.6.4. Result limitations;319
21.7;14.7. Closing remarks;320
21.8;Problems;321
22;CHAPTER 15. EXERGY ANALYSIS OF FUEL CELL SYSTEMS;322
22.1;15.1. Introduction;322
22.2;15.2. Background;323
22.2.1;15.2.1. PEM fuel cells;323
22.2.2;15.2.2. Solid oxide fuel cells;323
22.3;15.3. Exergy analysis of a PEM fuel cell power system;324
22.3.1;15.3.1. System description;324
22.3.2;15.3.2. PEM fuel cell performance model;325
22.3.3;15.3.3. Analysis;326
22.3.4;15.3.4. Results and discussion;327
22.3.5;15.3.5. Closure;331
22.4;15.4. Energy and exergy analyses of combined SOFC–gas turbine systems;332
22.4.1;15.4.1. Description of systems;332
22.4.2;15.4.2. Analysis;334
22.4.3;15.4.3. Thermodynamic model of the SOFC stack;337
22.4.4;15.4.4. Exergy balances for the overall systems;338
22.4.5;15.4.5. Results and discussion;339
22.4.6;15.4.6. Closure;342
22.5;15.5. Closing remarks;342
22.6;Problems;342
23;CHAPTER 16. EXERGY ANALYSIS OF AIRCRAFT FLIGHT SYSTEMS;344
23.1;16.1. Introduction;344
23.2;16.2. Exergy analysis of a turbojet;345
23.2.1;16.2.1. Exergy flows through a turbojet;345
23.2.2;16.2.2. Exergy efficiencies for a turbojet;347
23.2.3;16.2.3. Impact of environment on turbojet assessment;347
23.3;16.3. Flight characteristics;348
23.4;16.4. Cumulative rational efficiency;348
23.4.1;16.4.1. Variable reference environment;348
23.4.2;16.4.2. Constant reference environment;350
23.5;16.5. Cumulative exergy loss;351
23.6;16.6. Contribution of exhaust gas emission to cumulative exergy loss;351
23.6.1;16.6.1. Variable reference environment;351
23.6.2;16.6.2. Constant reference environment;352
23.7;16.7. Closing remarks;353
23.8;Problems;353
24;CHAPTER 17. EXERGOECONOMIC ANALYSIS OF THERMAL SYSTEMS;354
24.1;17.1. Introduction;354
24.2;17.2. Economic aspects of exergy;355
24.2.1;17.2.1. Exergy and economics;355
24.2.2;17.2.2. Energy and exergy prices;356
24.3;17.3. Modeling and analysis;357
24.3.1;17.3.1. Fundamental relationships;357
24.3.2;17.3.2. Definition of key terms;359
24.3.3;17.3.3. Ratio of thermodynamic loss rate to capital cost;360
24.4;17.4. Key difference between economic and thermodynamic balances;360
24.5;17.5. Example: coal-fired electricity generation;361
24.5.1;17.5.1. Plant description and data;362
24.5.2;17.5.2. Data categorization;364
24.5.3;17.5.3. Results and discussion;366
24.6;17.6. Case study: electricity generation from various sources;368
24.6.1;17.6.1. Results and discussion;369
24.6.2;17.6.2. Relations for devices in a single generating station;369
24.6.3;17.6.3. Generalization of results;375
24.7;17.7. Exergoeconomics extended: EXCEM analysis;376
24.7.1;17.7.1. The EXCEM analysis concept;376
24.7.2;17.7.2. Development of a code for EXCEM analysis;376
24.7.3;17.7.3. Illustrative examples of EXCEM analysis;377
24.7.4;17.7.4. Exergy loss and cost generation;378
24.8;17.8. Closing remarks;380
24.9;Problems;380
25;CHAPTER 18. EXERGY ANALYSIS OF COUNTRIES, REGIONS AND ECONOMIC SECTORS;382
25.1;18.1. Introduction;382
25.2;18.2. Background and benefits;383
25.3;18.3. Applying exergy to macrosystems;383
25.3.1;18.3.1. Energy and exergy values for commodities in macrosystems;383
25.3.2;18.3.2. The reference environment for macrosystems;384
25.3.3;18.3.3. Efficiencies for devices in macrosystems;385
25.4;18.4. Case study: energy and exergy utilization in Saudi Arabia;386
25.4.1;18.4.1. Analysis of the residential sector;387
25.4.2;18.4.2. Analysis of the public and private sector;390
25.4.3;18.4.3. Analysis of the industrial sector;396
25.4.4;18.4.4. Analysis of the transportation sector;399
25.4.5;18.4.5. Analysis of the agricultural sector;405
25.4.6;18.4.6. Analysis of the utility sector;407
25.4.7;18.4.7. Energy and exergy efficiencies and flows for the sectors and country;409
25.4.8;18.4.8. Discussion;412
25.4.9;18.4.9. Summary of key findings;413
25.5;18.5. Comparison of different countries;413
25.6;18.6. Closing remarks;413
25.7;Problems;414
26;CHAPTER 19. EXERGETIC LIFE CYCLE ASSESSMENT;416
26.1;19.1. Introduction;416
26.2;19.2. Life cycle assessment;416
26.3;19.3. Exergetic LCA;417
26.4;19.4. Case study: exergetic life cycle analysis;418
26.4.1;19.4.1. Natural gas and crude oil transport;419
26.4.2;19.4.2. Natural gas reforming and crude oil distillation;419
26.4.3;19.4.3. Hydrogen production from renewable energy;421
26.4.4;19.4.4. Hydrogen compression;422
26.4.5;19.4.5. Hydrogen and gasoline distribution;423
26.4.6;19.4.6. Life cycle exergy efficiencies;424
26.5;19.5. Economic implications of ExLCA;425
26.6;19.6. LCA and environmental impact;426
26.6.1;19.6.1. Power generation and transportation;426
26.6.2;19.6.2. Environmental-impact reduction by substitution of renewables for fossil fuels;428
26.6.3;19.6.3. Main findings and extensions;434
26.7;19.7. Closing remarks;434
26.8;Problems;434
27;CHAPTER 20. EXERGY AND INDUSTRIAL ECOLOGY;436
27.1;20.1. Introduction;436
27.2;20.2. Industrial ecology;436
27.3;20.3. Linkage between exergy and industrial ecology;437
27.3.1;20.3.1. Depletion number;437
27.3.2;20.3.2. Integrated systems;437
27.4;20.4. Illustrative example;438
27.4.1;20.4.1. The considered gas-turbine combined cycle with hydrogen generation;438
27.4.2;20.4.2. Exergy analysis of the gas-turbine combined cycle with hydrogen generation;440
27.4.3;20.4.3. Results;440
27.5;20.5. Closing remarks;442
27.6;Problems;442
28;CHAPTER 21. CLOSING REMARKS AND FUTURE EXPECTATIONS;443
29;NOMENCLATURE;445
30;REFERENCES;448
31;APPENDIX A: GLOSSARY OF SELECTED TERMINOLOGY;459
32;APPENDIX B: CONVERSION FACTORS;462
33;APPENDIX C: THERMOPHYSICAL PROPERTIES;464
34;INDEX;470
34.1;A;470
34.2;B;470
34.3;C;470
34.4;D;470
34.5;E;471
34.6;F;471
34.7;G;471
34.8;H;471
34.9;I;471
34.10;K;471
34.11;L;471
34.12;M;472
34.13;N;472
34.14;O;472
34.15;P;472
34.16;Q;472
34.17;R;472
34.18;S;472
34.19;T;472
34.20;U;473
34.21;V;473
34.22;W;473