E-Book, Englisch, 735 Seiten, eBook
E-Book, Englisch, 735 Seiten, eBook
Reihe: Mechanical Engineering Series
ISBN: 978-1-4684-0512-5
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Kinematics.- 1.1. Point Kinematics.- 1.1.1. Example: The Trajectory in a Homogeneous Gravity Field Above a “Flat Planet”.- 1.1.2. Example: Guided Motion of a Point.- 1.1.3. The Natural Coordinates of the Trajectory.- 1.2. Kinematics of Rigid Bodies.- (§) Show ? to be a Free Vector.- (§) Reduction of Angular Velocity Vectors.- 1.2.1. Special Motions of a Rigid Body.- (§) Pure Translation.- (§) Rotation About a Fixed Point.- (§) Plane Motion of Rigid Bodies.- (§) Example: The Wheel in a Straight Rolling Motion.- (§) Acceleration.- 1.3. Kinematics of Deformable Bodies.- 1.3.1. Elongation and Shear.- 1.3.2. Dilatation and Strain Deviations.- 1.3.3. Streamlines and Streamtubes: Local and Convective Acceleration.- 1.3.4. Kinematic (Geometric) Boundary Conditions.- 1.4. Supplements to and Applications of Point and Rigid-Body Kinematics.- 1.4.1. The Velocity Diagram of Plane Motion.- 1.4.2. Kinematics of the Planetary Gear Train.- 1.4.3. The Universal Joint (after Kardan).- 1.4.4. Central Motion (The Kepler Problem): Polar Coordinates.- 1.5. Supplements to and Applications of Deformation Kinematics.- 1.5.1. The Uniaxial Homogeneous Deformation.- 1.5.2. The Natural Coordinates of the Streamline.- 1.5.3. The Strain Tensor. The Plane Strain State.- (§) The Tensor Property of the Strain Matrix.- (§) The Principal Axes Transformation, Mohr’s Circle.- 1.6. Conservation of Mass: The Continuity Equation.- 1.6.1. Stationary Flow Through a Conical Pipe: Eulerian and Lagrangean Representations.- 1.7. Exercises A 1.1 to A 1.8 and Solutions.- 2. Statics, Systems of Forces, Hydrostatics.- 2.1. Forces, Body-Forces, Tractions, Stresses, Equilibrium.- 2.1.1. Stresses in a Tensile Rod: Mohr’s Circle.- 2.1.2. Plane State of Stress: Mohr’s Circle.- 2.1.3. General State ofStress.- 2.1.4. Mean Normal Stress and Stress Deviations.- 2.2. Systems of Forces.- 2.2.1. The Plane Force System: Computational and Graphic Reduction, Conditions of Equilibrium.- (§) Example: Support Reactions of an In-Plane Loaded Structure.- 2.2.2. Symmetry of the Stress Tensor.- 2.2.3. The Parallel Force System: Center of Forces, Center of Gravity (Centroids), Static Moments.- 2.3. Hydrostatics.- 2.3.1. Fluid Under Gravity.- (§) Incompressible Fluid.- (§) A Linear Compressive Spring.- (§) A Nonlinear Spring.- 2.3.2. Pressurized Fluids.- (§) Principle of the Hydraulic Pump.- (§) Vessels and Pipes.- 2.3.3. The Gravitational Hydrostatic Pressure in Open Containers.- (§) A Flat Horizontal Base of Area A.- (§) A Plane Retaining Wall of Area A.- (§) Circular Cylindrical Surface (Fig. 2.23).- (§) Hydrostatic Pressure on a Spherical Surface (Fig. 2.24).- (§) Hydrostatic Loading of a Doubly Curved Surface.- (§) Illustrative Example: Uplift.- 2.3.4. The Hydrostatic Buoyancy.- (§) The Upright Floating Cylinder: Stability (Fig. 2.26).- (§) Floating Cylinder with Horizontal Axis: Stability.- (§) Buoyancy.- 2.4 Moments of Inertia of a Plane Area A and Their Rules of Transformation.- (§) Moments of Inertia About Parallel Axes.- (§) Moments of Inertia About Rotated Axes (Mohr’s Circle).- (§) The Ellipse of Inertia.- (§) Example: The Central Ellipse of a Rectangle, A= B × H.- 2.5. Statics of Simple Structures.- 2.5.1. Beams and Frames.- 2.5.1.1. Local Equilibrium of a Plane Arch and Plane Beam Element (Fig. 2.31).- 2.5.1.2. Straight Beams, Force and Funicular Polygon.- (§) The Cantilever Beam.- (§) The Hinged-Hinged Beam.- (§) Illustrative Example: Eccentrical Axial Force.- (§) The Graphic Solution by Means of the Force and Funicular Polygon.- (§)Continuous (Multispan) Beams.- 2.5.1.3. Influence Lines.- 2.5.1.4. Plane Frames and the Three-Hinged Arch.- 2.5.1.5. Two Statically Determinate Stress States.- (§) Bending Stresses in a Sandwich Cross-Section.- (§) Torsional Shear Stresses in a Thin-Walled Tube.- 2.5.2. Trusses.- 2.5.2.1.Planar Trusses.- 2.5.3. Statics of Flexible Cables (and Chains).- 2.6. Exercises A 2.1 to A 2.15 and Solutions.- 3. Mechanical Work, Power, Potential Energy.- 3.1. Work and Power of Single Forces and Couples.- 3.1.1. Example: The Work of Gravity Forces.- 3.1.2. Example: The Work of a Couple.- 3.2. Power Density, Stationary and lrrotational Forces, Potential Energy.- 3.3. Potential Energy of External Forces.- 3.3.1. Homogeneous and Parallel Gravity, Potential of the Dead Weight.- 3.3.2. Central Force Field with Point Symmetry.- 3.4. Potential Energy of Internal Forces.- 3.4.1. The Elastic Potential of the Hookean Solid (Linear Spring).- (§) Example: A Simple Truss.- 3.4.2. The Barotropic Fluid.- 3.5. Lagrangean Representation of the Work of Internal Forces, Kirchhoff’s Stress Tensor.- 3.6. Exercises A 3.1 to A 3.2 and Solutions.- 4. Constitutive Equations.- 4.1. The Elastic Body, Hooke’s Law of Linear Elasticity.- 4.1.1. The Linear Elastic Body, Hooke’s Law.- (§) The Bending Test.- (§) The Torsional Test.- 4.1.2. A Note on Anisotropy.- (§) Plane Stress State.- (§) Transverse Isotropy Lateral to the X Axis.- 4.1.3. A Note on Nonlinearity.- 4.2. The Visco-Elastic Body.- 4.2.1. Newtonian Fluid.- (§) Illustrative Example.- (§) The One-Dimensional Viscous Model.- 4.2.2. Linear Visco-Elasticity.- (§) The Kelvin-Voigt Body.- (§) Maxwell Fluid.- (§) The Multiple-Parameter Linear Visco-Elastic Body.- (§) General Linear Viscoelasticity.- 4.2.3. A Nonlinear Visco-ElasticMaterial.- (§) Example: The Creep Collapse of a Tensile Rod.- 4.3. The Plastic Body.- 4.3.1. The Rigid-Plastic Body.- 4.3.2. The Elastic-Plastic Body.- 4.3.3. The Visco-Plastic Body.- 4.4. Exercise A 4.1 and Solution.- 5. Principle of Virtual Work.- 5.1. Example: The Three-Hinged Arch.- 5.2. Influence Lines of Statically Determinate Structures.- 5.3. Conservative Mechanical Systems.- 5.3.1. Differential Equation of the Deflection of a Linear Elastic Beam.- 5.3.2. The von Karman Plate Equations.- 5.4. Principle of Complementary Virtual Work.- 5.4.1. Castigliano’s Theorem and Menabrea’s Theorem.- (§) The Linear Elastic, Thin, and Straight Rod.- (§) A Plane Truss with a Single Internal Static Indeterminacy (Fig. 5.7).- (§) A Double-Span Beam Loaded According to Fig. 5.9.- (§) Deflection of a Uniformly Loaded Cantilever.- (§) The Plane Snap Under the Action of Tip Forces.- 5.4.2. Betti’s Method.- (§) Thin-Walled Structures Free of Any Torsion..- (§) The Cantilever of Fig. 5.11.- (§) The Cantilever with an Additional Simple Support, Fig. 5.13.- 5.4.3. Transformation of the Principles of Minimum Potential and Complementary Energy.- 5.5. Exercises A 5.1 to A 5.4 and Solutions.- 6. Selected Topics of Elastostatics.- 6.1. Continuum Theory of Linearized Elastostatics.- (§) The One-Dimensional Problems of Linear Elasticity.- (§) Shrink Fit.- 6.1.1. Thermoelastic Deformations.- (§) The Complementary Energy of a Thermally Loaded Rod.- (§) Example: A Single-Span Redundant Beam.- (§) Maysel’s Formula of Thermoelasticity.- (§) A Hollow Sphere with Point Symmetry and a Thick-Walled Cylinder with Axial Symmetry, Maysel’s Formula.- 6.1.2. Saint Venant’s Principle.- 6.1.3. Stress and Strain Hypotheses.- (§) Principal Normal Stress Hypothesis.- (§) Hencky-vonMises Energy Hypothesis.- (§) Mohr-Coulomb Stress Hypothesis.- (§) The Concept of Allowable Stress.- 6.2. Rods and Beams with Straight Axes.- (§) Normal Force and Bending Moments.- 6.2.1. Shear Stresses and Deformations due to a Shear Force.- (§) Rectangular Cross-Section.- (§) Maximal Shear in an Elliptic or Circular Cross-Section.- (§) Equation (6.58) when Applied to the T Cross-Section.- (§) Example: Deflection of a Cantilever in Shear Bending.- 6.2.2. Mohr’s Method of Calculating Deflections.- (§) Mohr’s Analytic Method Applied to the Cantilever of Fig. 6.9.- (§) Mohr’s Graphic Method Applied to the Cantilever of Fig. 6.9.- (§) Influence Lines of Deformations by Mohr’s Method.- (§) Mohr’s Method.- (§) The Multispan Beam of Fig. 6.13.- 6.2.3. Thermal Stresses in Beams.- (§) The Single-Span, Simply Supported Beam.- (§) A Redundant Single-Span Beam.- 6.2.4. Torsion.- 6.2.4.1. Thin-Walled, Single- and Multiple-Cell Cross-Sections.- 6.2.4.2. Thin-Walled Open Cross-Sections.- (§) Torsion of a Thin-Walled Bar with Rectangular Cross-Section.- (§) Generalization of Eq. (6.134).- (§) Constrained Warping.- (§) The Cantilever with a C-Profile of Fig. 6.17.- 6.2.4.3. Torsion of Elliptic and Circular, Full and Hollow Cylinders.- (§) Elliptic Cross-Section.- 6.2.4.4. Torsion of a Notched Circular Shaft.- 6.2.4.5. Prandtl’s Membrane and an Electric Analogy.- 6.3. Multispan Beams and Frames.- (§) The Force Method of the Multispan Beam.- (§) The Deformation Method.- (§) The Deformation Method Applied to Frames.- 6.3.1. The Planar Single-Story Frame.- 6.4. Plane-Curved Beams and Arches.- (§) The Complementary Energy of the Curved Beam.- 6.4.1. Slightly Curved Beams and Arches.- (§) The Slightly Curved Parabolic Arch of Fig. 6.27.- (§) The SlightlyCurved Ring.- (§) Spinning Rings.- 6.5. In-Plane Loaded Plates.- 6.5.1. The Semiinfinite Plate.- (§) The Boussinesq Problem.- (§) The Stress Function in the Case of a Tangential Single Force.- 6.5.2. Stationary Spinning Disks.- 6.5.3. The Infinite Plate with a Circular Hole: Kirsch’s Problem.- 6.5.4. Thermal Membrane Stresses in Plates.- 6.6. Flexure of Plates.- 6.6.1. Axisymmetric Flexure of Circular Kirchhoff Plates.- 6.6.2. The Infinite Plate Strip.- 6.6.3. The Rectangular Plate with Four Edges Simply Supported.- 6.6.4. Thermal Deflection of Plates.- (§) A Plate of Quadratic Planform.- (§) The Infinite Plate.- 6.7. Thin Shells of Revolution.- (§) Membrane Stresses.- (§) Bending Perturbation of the Membrane State.- 6.7.1. Thin Circular Cylindrical Shells.- (§) The Open Cylindrical Storage Tank.- 6.7.2. The Semispherical Dome of Fig. 6.39.- 6.7.3. Thermal Stresses in Thin Shells of Revolution.- (§) The Radial Thermal Expansion of a Circular Cylindrical Shell.- 6.8. Contact Problems (The Hertz Theory).- 6.9. Stress-Free Temperature Fields, Fourier’s Law of Heat Conduction.- 6.10. The Elastic-Visco-Elastic Analogy.- 6.10.1. The Creeping Simply Supported Single-Span Beam.- 6.10.2. The Heated Thick-Walled Pipe (Fig. 6.42).- 6.11. Exercises A 6.1 to A 6.22 and Solutions.- 7. Dynamics of Solids and Fluids, Conservation of Momentum of Material and Control Volumes.- 7.1. Conservation of Momentum.- 7.2. Conservation of Angular Momentum.- 7.3. Applications of Control Volumes.- 7.3.1. Stationary Flow Through an Elbow.- (§) The Plane Elbow.- (§) A Nozzle with a Straight Axis.- (§) Plane U-Shaped Elbow.- 7.3.2. Thrust of a Propulsion Engine.- 7.3.3. Euler”s Turbine Equation.- 7.3.4. Water Hammer in a Straight Pipeline.- 7.3.5. Carnot s Loss of Pressure Head.-7.4. Applications to Rigid-Body Dynamics.- 7.4.1. The Rolling Rigid Wheel.- 7.4.2. Cable Drive.- 7.4.3. Dynamics of the Crushing Roller (Fig. 1.3).- 7.4.4. Swing Crane with a Boom.- 7.4.5. Balancing of Rotors.- 7.4.6. The Gyro-Compass.- 7.4.7. The Linear Oscillator.- (§) Periodic Forcing Function, F(t) = F(t + Te).- (§) Excitation by a Nonperiodic Forcing Function.- (§) Representation of the Motion in the Phase Plane (?, d?/dt).- (§) Some Structural Models of the Linear Oscillator.- (§) Linear Torsional Vibrations.- 7.4.8. Nonlinear Vibrations.- (§) Motion of a Planar Pendulum.- (§) SDOF-System with Dry Friction.- 7.4.9. Linear Elastic Chain of Oscillators.- (§) The Residual Method of Holzer and Tolle.- (§) Dunkerly’s Formula.- (§) Natural Modes.- (§) The Amplitude Frequency Response Functions of the Two-Mass System.- 7.5. Bending Vibrations of Linear Elastic Beams.- (§) Natural and Forced Vibrations of a Slender, Hinged-Hinged, Single-Span Beam.- 7.6. Body Waves in the Linear Elastic Solid.- (§) The Longitudinal Wave.- (§) The Shear Wave.- 7.7. Exercises A 7.1 to A 7.12 and Solutions.- 8 First Integrals of the Equations of Motion, Kinetic Energy.- 8.1. The Power Theorem and Kinetic Energy.- 8.2. Conservation of Mechanical Energy.- 8.3. Kinetic Energy of a Rigid Body.- 8.3.1. Pure Rotation of the Rigid Body About a Fixed Point 0.- 8.3.2. Rotation About an Axis ea Fixed in Space.- 8.4. Conservation of Energy in SDOF-Systems.- 8.4.1. Motion of a Linear Oscillator After Impact (Fig. 8.1).- 8.4.2. The Basic Vibrational Mode of a Linear Elastic Beam.- 8.4.3. Acceleration of a Motorized Vehicle.- 8.4.4. The Turning Points of a Nonlinear, Dry-Friction Oscillator.- 8.5. Bernoulli’s Equation of Fluid Mechanics.- 8.5.1. Stationary Flow with Power Charging orDischarging.- 8.5.2. Velocity of Efflux from a Small Aperture in an Open Vessel or a Pressurized Tank (Fig. 8.5).- 8.5.3. Stationary Flow Round an Immersed Rigid Body at Rest.- 8.5.4. Inviscid Flow Along a Rigid Wall.- 8.5.5. Pressure in a Pipe Measured by a Gully.- 8.5.6. Prandtl’s Tube and Pitot’s Tube.- 8.5.7. Transient Flow in a Drain Pipe Controlled by a Cock.- 8.5.8. Free Vibrations of a Fluid in an Open U-Shaped Pipe.- 8.5.9. Lossless Flow Through a Diffusor.- 8.5.10. A Bernoulli-Type Equation in a Rotating Reference System.- (§) Example: Segner’s Water Wheel.- 8.6. Remarks on the First Law of Thermodynamics (Conservation of Energy).- 8.7. Exercises A 8.1 to A 8.5 and Solutions.- 9. Stability Problems.- 9.1. Stability of an Equilibrium Configuration.- (§) Hanging Pendulum.- (§) Upright Position of the Pendulum.- 9.1.1. Example: The Balancing Problem of Heavy Rigid Cylinders.- 9.1.2. Example: A Simple Model of Buckling.- 9.1.3. Example: Stability of a Shallow Structure Under Lateral Load.- 9.1.4. Example: Buckling of Slender Elastic Columns (Euler Buckling).- 9.1.5. The Eccentrically Loaded Linear Elastic Column.- 9.1.6. Buckling of Thin Plates.- (§) Rectangular Simply Supported Plate.- 9.2. Stability of Motion.- 9.2.1. Example: The Centrifugal Governor.- 9.2.2. Stability of the Steady State of the Spinning Unsymmetric Gyroscope.- 9.3. Bounds of Stability of Equilibrium of Elastic-Plastic Structures: Limit Load Analysis.- 9.3.1. The Limit Load of the Single-Story Elastic-Plastic Frame.- 9.4. Stability of Motion of Elastic-Plastic Bodies (Cyclic Plasticity).- 9.5. Stability of the Flow in Dipping Open Channels, the Hydraulic Jump.- 9.6. Flutter Instability.- 9.7. Exercises A 9.1 to A 9.7 and Solutions.- 10. D’Alembert’s Principle and LagrangeEquations of Motion.- (§) A Point Mass m Carrying a Charge q, the Lorentz Force.- 10.1. Natural Vibrations of an Elastically Supported Foundation.- 10.2. Pendulum with Moving Support.- 10.2.1. Horizontal Motion of the Support.- 10.2.2. Vertical Motion of the Support.- 10.3. MDOF-Vibrational System of Point Masses Supported by a Mass-Less String.- 10.4. MDOF-Vibrational System of Point Masses Supported by a Mass-Less Beam.- 10.5. Planar Framed System with External Viscous Damping.- 10.6. Vibrational Testing by an Unbalanced Rotor.- 10.7. Exercises A 10.1 to A 10.3 and Solutions.- 11. Some Approximation Methods of Dynamics and Statics.- 11.1. The Rayleigh-Ritz-Galerkin Approximation Method.- 11.1.1. The Rayleigh-Ritz Method and the Lagrange Equations of the Equivalent MDOF-System.- 11.1.2. The Galerkin Procedure.- 11.1.3. Complete Algebraization of the Lagrange Equations of Motion.- 11.1.4. Forced Vibrations of a Nonlinear Oscillator.- 11.2. Illustrations of Linearized Elastic Systems with Heavy Mass and Soft Spring, SDOF Equivalent System.- 11.2.1. Longitudinal Vibrations.- 11.2.2. Bending Vibrations.- 11.2.3. Torsional Vibrations.- 11.2.4. Single-Story Frame.- 11.2.5. Thin Elastic Circular Plate with a Centrally Attached Heavy Mass.- 11.3. Examples of Elastic Structures with Abstract Equivalent Systems.- 11.3.1. Free Flexural Vibrations of a Prestressed Slender Beam.- 11.3.2. Buckling Load of the Euler Column on an Elastic Foundation.- 11.3.3. Torsional Rigidity of an Elastic Rod with a Rectangular Cross-Section.- 11.4. The Finite-Element Method (FEM).- 11.4.1. A Beam Element.- 11.4.2. The Planar Triangular Plate Element.- 11.5. Linearization of Nonlinear Equations of Motion.- (§) Linearization by Harmonic Balance.- (§) Transient Vibrations of Nonlinear Systems.-11.6. Numerical Integration of a Nonlinear Equation of Motion.- 11.7. Exercises A11.1 to A 11.11 and Solutions.- 12. Impact.- 12.1. Finite Relations of Momentum and Angular Momentum.- 12.1.1. Example: Impacting a Rigid-Plate Pendulum.- 12.1.2. Example: Axial Impact of a Deformable (Elastic) Column.- 12.2. Lagrange Equations of Idealized Impact.- 12.2.1. Example: Impacting a Chain-Type Pendulum (MDOF-S).- 12.2.2. Lateral Impact Loading of a Simply Supported (Elastic) Beam.- 12.3. Idealized Elastic and Inelastic Impact Processes.- 12.3.1. The Idealized Elastic Impact.- 12.3.2. The Idealized Inelastic Impact.- 12.3.3. Example: Collision of Two Point Masses.- (§) Idealized Elastic Impact.- (§) Idealized Inelastic Impact.- 12.4. The “Ballistic” Pendulum and the Center of Impact.- (§) Conservation of Energy.- (§) Inelastic Impact.- 12.5. Sudden Fixation of an Axis of Rotation.- 12.6. Dynamic Magnification Factor of Axial and Lateral Impact.- 12.7. Axial Impact of a Thin Elastic Rod, Wave Propagation.- 12.8. Water Hammer, Wave Propagation.- 12.9. Exercises A 12.1 to A 12.3 and Solutions.- 13. Elementary Supplements of Fluid Dynamics.- 13.1. Circulation and the Vortex Vector.- 13.2. The Hydrodynamic Lift Force.- 13.3. The Navier-Stokes Equations, Similarity Solutions.- 13.3.1. Viscous Pipe Flow.- 13.3.2. The Boundary Layer of a Plate.- 13.4. Potential Flow, the Singularity Method.- 13.4.1. Illustrative Examples.- (§) Two-Dimensional Potential Flow Toward a Rigid Wall.- (§) Two-Dimensional Flow in a Corner Space and Round a Sharp Edge.- (§) Singular Potential Flows.- 13.4.2. The Singularity Method.- (§) Superposition of a Line Source and a Parallel Main Stream.- (§) Superposition of Potential Vortex Lines and a Parallel Main Stream.- 13.4.3. Hydrodynamic Forces inTwo-Dimensional and Stationary Potential Flow, the Blasius Formula.- 13.4.4. von Karman Trail of Vortices, the Strouhal Number.- 13.4.5. The Hydrodynamic Pressure at the Face of a Moving Dam.- 13.4.6. Stationary Efflux of Gas from a Pressure Vessel.- 13.5. Momentum Integral Method of Boundary-Layer Analysis.- 13.6. Exercises A 13.1 to A 13.4 and Solutions.- Table A. Some Average Values of Mechanical Material Parameters.