Buch, Englisch, 406 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 453 g
Buch, Englisch, 406 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 453 g
ISBN: 978-1-032-92047-4
Verlag: CRC Press
Computational biomechanics is an emerging research field that seeks to understand the complex biomechanical behaviors of normal and pathological human joints to come up with new methods of orthopedic treatment and rehabilitation.
Computational Biomechanics of the Musculoskeletal System collects the latest research and cutting-edge techniques used in computational biomechanics, focusing on orthopedic and rehabilitation engineering applications. The book covers state-of-the-art techniques and the latest research related to computational biomechanics, in particular finite element analysis and its potential applications in orthopedics and rehabilitation engineering. It offers a glimpse into the exciting potentials for computational modeling in medical research and biomechanical simulation.
The book is organized according to anatomical location—foot and ankle, knee, hip, spine, and head and teeth. Each chapter details the scientific questions/medical problems addressed by modeling, basic anatomy of the body part, computational model development and techniques used, related experimental studies for model setup and validation, and clinical applications. Plenty of useful biomechanical information is provided for a variety of applications, especially for the optimal design of body support devices and prosthetic implants.
This book is an excellent resource for engineering students and young researchers in bioengineering. Clinicians involved in orthopedics and rehabilitation engineering may find this work to be both informative and highly relevant to their clinical practice.
Zielgruppe
Academic and Professional Reference
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Chirurgie
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Orthopädie, konservativ
- Naturwissenschaften Biowissenschaften Biowissenschaften
- Naturwissenschaften Physik Physik Allgemein
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Biotechnologie Medizinische Biotechnologie
Weitere Infos & Material
Foot and Ankle Joint. Foot Model for Investigating Foot Biomechanics and Footwear Design. Female Foot Model for High-Heeled Shoe Design. Foot and Ankle Model for Surgical Treatment. First Ray Model Comparing Normal and Hallux Valgus Feet. Dynamic Foot Model for Impact Investigation. Knee Joint. Knee Joint Model for Anterior Cruciate Ligament Reconstruction. Knee Joint Models for Kneeling Biomechanics. Knee Implant Model: A Sensitivity Study of Trabecular Stiffness on Periprosthetic Fracture. Hip and Pelvis. Femur Model for Predicting Strength and Fracture Risk. Hip Model for Osteonecrosis. Pelvis Model for Reconstruction with Autografted Long Bones Following Hindquarter Amputation. Lower Limb for Rehabilitation. Foot–Ankle–Knee Model for Foot Orthosis. Lower Residual Limb for Prosthetic Socket Design. Residual Limb Model for Osteointegration. Spine. Spine Model for Vibration Analysis. Cervical Spinal Fusion and Total Disc Replacement. Spine Model for Disc Replacement. Spine Model for Applications in Aviation Protection. Head and Hand. Head Model for Protection. Tooth Model in Orthodontics and Prosthodontics. Eye Model and Its Application. Temporomandibular Joint Model for Asymptomatic and Dysfunctional Joints. Fingertip Model for Blood Flow and Temperature. Bone. Micro-Finite Element Model for Bone Strength Prediction. Simulation of Osteoporotic Bone Remodeling.