E-Book, Englisch, 230 Seiten, E-Book
E-Book, Englisch, 230 Seiten, E-Book
ISBN: 978-3-527-81650-7
Verlag: Wiley-VCH
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
This book builds a bridge for scientists and engineers to fill potential know-how gaps for all working on SQUID systems and their practical applications. Key words such as readout electronics, flux quantization, Josephson effects or noise contributions will be no obstacle for the design and application of simple and robust SQUID systems.
Autoren/Hrsg.
Weitere Infos & Material
1 INTRODUCTION
1.1 Motivation
1.2 Contents of the chapters
2 JOSEPHSON JUNCTIONS
2.1 Josephson equations
2.2 RCSJ model
3 DC SQUID'S I-V CHARACTERISTICS AND ITS BIAS MODES
3.1 SQUID's I-V characteristics
3.2 An ideal current source
3.3 A practical voltage source
4 FUNCTIONS OF THE SQUID'S READOUT ELECTRONICS
4.1 Selection of the SQUID's bias mode
4.2 Flux locked loop (FLL)
4.2.1 Principle of the FLL
4.2.2 Electronic circuit of the FLL and the selection of the working point
4.2.3 "Locked" and "unlocked" cases in the FLL
4.2.4 Slew rate of the SQUID system
4.3 Suppressing the noise contribution from the preamplifier
4.4 Two models of a dc SQUID
5 DIRECT READOUT SCHEME (DRS)
5.1 Introduction
5.2 Readout electronics noise in DRS
5.2.1 Noise characteristics of two types of preamplifiers
5.2.2 Noise contribution of a preamplifier with different source resistors
5.3 Chain rule and flux noise contribution of a preamplifier
5.3.1 Test circuit using the same preamplifier in both bias modes
5.3.2 Noise measurements in both bias modes
5.4 Summary of the DRS
6 SQUID MAGNETOMETRY SYSTEM AND SQUID PARAMETERS
6.1 Field-to-flux transformer circuit (converter)
6.2 Three dimensionless characteristic parameters, beta-c, Gamma, and beta-L, in SQUID operation
6.2.1 SQUID's nominal Stewart-McCumber characteristic parameter beta-c
6.2.2 SQUID's nominal thermal noise parameter Gamma
6.2.3 SQUID's screening parameter beta-L
6.2.4 Discussion on the three characteristic parameters
7 FLUX MODULATION SCHEME (FMS)
7.1 Mixed bias modes
7.2 Conventional explanation of the FMS
7.2.1 Schematic diagram of the FMS
7.2.2 Time domain and flux domain
7.2.3 Flux modulation
7.2.4 Five additional notes
7.3 FMS revisited
7.3.1 Bias mode in FMS
7.3.2 Basic consideration of synchronous measurements of Is and Vs
7.3.3 Experimentally synchronous measurements of Delta i and VRs
7.3.4 Transfer characteristics of the step-up transformer
7.3.5 V(Phi) comparison obtained by DRS and FMS
7.4 Conclusion
8 FLUX FEEDBACK CONCEPTS AND PARALLEL FEEDBACK CIRCUIT
8.1 Flux Feedback Concepts and its History
8.2 SQUID's apparent parameters
8.3 Parallel Feedback Circuit (PFC)
8.3.1 Working Principle of the PFC in Current Bias Mode
8.3.2 Working Principle of PFC in Voltage Bias Mode
8.3.3 Brief Summary of Qualitative Analyses of PFC
8.4 Quantitative analyses and experimental verification of the PFC in voltage bias mode
8.4.1 The equivalent circuit with the PFC in voltage bias mode
8.4.2 Introduction of Two Dimensionless Parameters r and ¿
8.4.3 Numerical calculations
8.4.4 Experimental Results
8.4.5 Noise Comparison and Interpretation
8.4.6 Two practical designs for PFC
8.5 Main achievements of PFC quantitative analysis
8.6 Comparison with the noise behaviors of two preamplifiers
9 ANALYSES OF THE "SERIES FEEDBACK COIL (CIRCUIT)" (SFC)
9.1 SFC in current bias mode
9.1.1 Working principle of the SFC in current bias mode
9.1.2 Noise measurements of a weakly damped SQUID (magnetometer) system with the SFC
9.2 The SFC in voltage bias mode
9.3 Summary of the PFC and SFC
9.4 Combination of the PFC and SFC (PSFC)
9.4.1 PSFC analysis under independence conditions
9.4.2 PSFC experiments and results
9.4.3 Conclusion of the PSFC
10 WEAKLY DAMPED SQUID
10.1 Basic consideration of weakly damped SQUID
10.2 SQUID system noise measurements with different ßc values
10.3 Statistics of SQUID properties
10.4 Single chip readout electronics (SCRE)
10.4.1 Principle of SCRE and its performance
10.4.2 Equivalent circuit of SCRE
10.4.3 Differences between the conventional version of readout electronics with an integrator and SCRE
10.4.4 Two applications of SCRE
10.5 Suggestions for the DRS
11 TWO-STAGE AND DOUBLE RELAXATION OSCILLATION READOUT SCHEMES
11.1 Two-stage scheme
11.2 ROS and DROS
11.3 Some comments on D-ROS and two-stage scheme
12 RADIO-FREQUENCY (RF) SQUID
12.1 Fundamentals of an rf SQUID
12.2 Conventional rf SQUID system
12.2.1 Block diagram of rf SQUID readout electronics (the 30 MHz version)