E-Book, Englisch, 243 Seiten, eBook
Reihe: Lecture Notes in Mobility
Smart Systems Transforming the Automobile
E-Book, Englisch, 243 Seiten, eBook
Reihe: Lecture Notes in Mobility
ISBN: 978-3-319-66972-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Organisation Committee;8
2.1;Funding Authority;8
2.2;Supporting Organisations;8
2.3;Organisers;8
2.4;Steering Committee;8
2.5;Conference Chair;9
2.6;Conference Organizing Team;9
3;Contents;10
4;Smart Sensors;13
5;1 Smart Sensor Technology as the Foundation of the IoT: Optical Microsystems Enable Interactive Laser Projection;14
5.1;Abstract;14
5.2;1 MEMS Sensors—The Hidden Champions;15
5.2.1;1.1 Enablers for the Internet of Things;15
5.2.2;1.2 Challenges and Barriers for IoT Sensors;15
5.2.3;1.3 The Role of Smart Sensors in the IoT;16
5.3;2 Interactive Laser Projection;16
5.3.1;2.1 Making User Interfaces Simpler, More Flexible … and More Fun;17
5.3.2;2.2 Interactive Projection in Practice;18
5.3.3;2.3 A Window to the IoT;18
5.3.4;2.4 Interactive Projection for the Automotive Industry;20
5.3.4.1;2.4.1 Industry Teamwork;20
5.3.5;2.5 Wearables and Beyond;20
5.3.6;2.6 A Compact Module;21
5.4;3 Conclusion;22
6;2 Unit for Investigation of the Working Environment for Electronics in Harsh Environments, ESU;23
6.1;Abstract;23
6.2;1 Introduction;24
6.3;2 Monitoring Unit, ESU;24
6.3.1;2.1 ESU Main Data;29
6.3.1.1;2.1.1 Condensation Measurement;29
6.3.1.2;2.1.2 Relative Humidity Measurement;29
6.3.1.3;2.1.3 Vibration Measurement;30
6.3.1.4;2.1.4 Temperature Measurement;30
6.3.1.5;2.1.5 RTC;30
6.3.1.6;2.1.6 User Interface;31
6.3.2;2.2 Reliability of the ESU;31
6.3.3;2.3 EMC Test;31
6.4;3 Market Assessments;32
6.5;Acknowledgements;32
6.6;Reference;32
7;3 Automotive Synthetic Aperture Radar System Based on 24 GHz Series Sensors;33
7.1;Abstract;33
7.2;1 Introduction;34
7.2.1;1.1 Automotive Radar Sensors;35
7.2.2;1.2 Odometry;35
7.3;2 Related Work;35
7.4;3 SAR Algorithm;36
7.5;4 Performance Estimation;37
7.5.1;4.1 Azimuth Resolution;37
7.5.2;4.2 Range Resolution;38
7.5.3;4.3 Maximum Velocity;39
7.6;5 Evaluation Environment;39
7.7;6 Evaluation of Automotive Relevant SAR Properties;40
7.7.1;6.1 Incorrect Trajectory Measurement;41
7.7.2;6.2 Time-Based Sampling;42
7.8;7 Simulation and Measurement;43
7.8.1;7.1 Measurement;44
7.8.2;7.2 Simulation;45
7.9;8 Conclusion;45
7.10;Acknowledgements;46
7.11;References;46
8;4 SPAD-Based Flash Lidar with High Background Light Suppression;47
8.1;Abstract;47
8.2;1 Introduction;47
8.3;2 Sensor Principle;48
8.4;3 Technology and Measurements;49
8.5;4 Summary;52
8.6;References;53
9;Driver Assistance and Vehicle Automation;54
10;5 Enabling Robust Localization for Automated Guided Carts in Dynamic Environments;55
10.1;Abstract;55
10.2;1 Introduction;55
10.3;2 Related Work;57
10.4;3 The MCL/MU Approach;58
10.4.1;3.1 Map Update Control;59
10.4.2;3.2 Map Update and Map Update Fusion;60
10.5;4 Evaluation;62
10.6;5 Conclusion;64
10.7;References;65
11;6 Recognition of Lane Change Intentions Fusing Features of Driving Situation, Driver Behavior, and Vehicle Movement by Means of Neural Networks;66
11.1;Abstract;66
11.2;1 Introduction;66
11.3;2 Features Indicating Upcoming Lane Changes;68
11.4;3 Implementation and Sensor Data;69
11.5;4 Naturalistic Driving Study;70
11.6;5 Neural Network for Feature Classification;70
11.6.1;5.1 Artificial Neural Networks;71
11.6.2;5.2 Network Design;72
11.6.3;5.3 Network Parameterization;73
11.7;6 Experimental Results;73
11.8;7 Conclusion and Future Work;74
11.9;Acknowledgements;76
11.10;References;76
12;7 Applications of Road Edge Information for Advanced Driver Assistance Systems and Autonomous Driving;77
12.1;Abstract;77
12.2;1 Introduction;77
12.3;2 Road Edge Detection;78
12.3.1;2.1 Target Road Edge;78
12.3.2;2.2 Road Edge Detection Result;79
12.4;3 Application for Advanced Driver Assistance Systems;79
12.4.1;3.1 Euro NCAP;79
12.4.2;3.2 Integrated Lateral Assist System;80
12.4.2.1;3.2.1 Overview of Virtual Lane Guide;80
12.4.2.2;3.2.2 Target of VLG;83
12.4.2.3;3.2.3 Coordination of EPS and ESC;84
12.4.3;3.3 Experimental Result;85
12.5;4 Application for Autonomous Driving;87
12.5.1;4.1 Path Planning Algorithm;87
12.5.1.1;4.1.1 Path Planner;87
12.5.1.2;4.1.2 Path Selector;87
12.5.2;4.2 Simulation Result;90
12.5.3;4.3 Experimental Result;90
12.6;5 Conclusion;91
12.7;References;91
13;8 Robust and Numerically Efficient Estimation of Vehicle Mass and Road Grade;93
13.1;Abstract;93
13.2;1 Introduction;93
13.3;2 Methodology;95
13.3.1;2.1 Test Vehicle and Test Tracks;95
13.3.2;2.2 System Model;96
13.3.3;2.3 Recursive Least Squares (RLS) Algorithm;97
13.4;3 Sensitivity Analysis and Parameter Estimation;99
13.4.1;3.1 Sensitivity Analysis;99
13.4.2;3.2 Identification of Parameters and Validation of the Vehicle Model;100
13.5;4 Results;102
13.5.1;4.1 Validation with a Numerical Model;103
13.5.2;4.2 Results in Real-World Driving Conditions;103
13.6;5 Summary;104
13.7;References;106
14;9 Fast and Accurate Vanishing Point Estimation on Structured Roads;107
14.1;Abstract;107
14.2;1 Introduction;107
14.3;2 Vanishing Point;108
14.4;3 System Overview;108
14.4.1;3.1 Double-Edge Detection;108
14.4.2;3.2 Double-Edge Filtering;110
14.4.3;3.3 Double-Edge Grouping to Lane Markings;111
14.4.4;3.4 Lane Marking Filtering;112
14.4.5;3.5 Lane Marking Simplification;113
14.4.6;3.6 Vanishing Point Estimation;113
14.5;4 Results;114
14.6;5 Conclusion;116
14.7;References;116
15;10 Energy-Efficient Driving in Dynamic Environment: Globally Optimal MPC-like Motion Planning Framework;117
15.1;Abstract;117
15.2;1 Introduction;118
15.3;2 Problem Definition;119
15.3.1;2.1 Optimal Control Problem;119
15.3.2;2.2 Computational Complexity;120
15.4;3 Optimal Motion Planner;120
15.4.1;3.1 Dynamic Programming;121
15.4.2;3.2 Strategic Planning;121
15.4.3;3.3 Situation-Dependent Replanning;122
15.4.3.1;3.3.1 Prediction Horizon;125
15.4.3.2;3.3.2 Replanning Triggering;126
15.5;4 Simulation Results;126
15.6;5 Conclusion;127
15.7;Acknowledgements;127
15.8;References;127
16;Data, Clouds and Machine learning;129
17;11 Automated Data Generation for Training of Neural Networks by Recombining Previously Labeled Images;130
17.1;Abstract;130
17.2;1 Introduction;130
17.3;2 Related Work;132
17.3.1;2.1 Available Public Datasets;132
17.3.2;2.2 Image Manipulation and Recombination;133
17.4;3 Semi-artificial Dataset Creation;133
17.5;4 Evaluation;135
17.6;5 Summary and Outlook;137
17.7;References;139
18;12 Secure Wireless Automotive Software Updates Using Blockchains: A Proof of Concept;141
18.1;Abstract;141
18.2;1 Introduction;142
18.3;2 Background;143
18.3.1;2.1 Wireless Automotive Software Updates;143
18.3.2;2.2 Blockchains;144
18.4;3 Architecture Enabling Wireless Software Updates;145
18.4.1;3.1 Blockchain-Based Architecture Securing Wireless Software Updates;146
18.4.2;3.2 Employing Our Architecture to Distribute New SW;147
18.5;4 Proof of Concept;148
18.6;5 Evaluation;150
18.6.1;5.1 Overhead Due to the Use of Blockchains;150
18.6.2;5.2 Latency Comparison: Local SW Update Versus SW Distribution Using BC;150
18.6.3;5.3 Comparison of BC- and Certificate-Based Approaches;151
18.7;6 Conclusion;152
18.8;References;152
19;13 DEIS: Dependability Engineering Innovation for Industrial CPS;154
19.1;Abstract;154
19.2;1 Introduction;155
19.3;2 The Digital Dependability Identity (DDI) Concept;156
19.4;3 The Four Industrial Use Cases in DEIS Project;158
19.4.1;3.1 Automotive: Development of a Stand-Alone System for Intelligent Physiological Parameter Monitoring;158
19.4.2;3.2 Automotive: Enhancement of an Advanced Driver Simulator for Evaluation of Automated Driving Functions;160
19.4.3;3.3 Railway: Enabling Plug-and-Play Scenarios for Heterogeneous Railway Systems;161
19.4.4;3.4 Health Care: Enhancement of Clinical Decision App for Oncology Professional;162
19.5;4 Opportunities for DDI Applications;164
19.6;5 Conclusions;165
19.7;References;166
20;Safety and Testing;167
21;14 Smart Features Integrated for Prognostics Health Management Assure the Functional Safety of the Electronics Systems at the High Level Required in Fully Automated Vehicles;168
21.1;Abstract;168
21.2;1 Introduction;168
21.3;2 Prognostics Health Management;170
21.4;3 PHM Strategy;172
21.5;4 PHM Indicators and Parameters for the RUL Estimation;175
21.6;Acknowledgements;178
21.7;References;178
22;15 Challenges for the Validation and Testing of Automated Driving Functions;180
22.1;Abstract;180
22.2;1 Introduction;180
22.3;2 Challenges for Validation and Testing;182
22.3.1;2.1 Complexity of Automated Driving Functions;182
22.3.2;2.2 Variation of Scenarios and Parameters;183
22.3.3;2.3 Scenario Selection and Test Generation;183
22.4;3 Current Methodologies/Technology Overview;184
22.5;4 Validation—Global Approach;185
22.6;5 Supporting Tools in the Validation Task;185
22.7;6 Standardization;187
22.8;7 Conclusion;188
22.9;Acknowledgements;188
22.10;References;188
23;16 Automated Assessment and Evaluation of Digital Test Drives;189
23.1;Abstract;189
23.2;1 Introduction;190
23.3;2 State of the Art in Automotive Testing;191
23.3.1;2.1 Test Processes and Methodologies;191
23.3.2;2.2 Digital Test Drive;193
23.4;3 Requirements and Constraints for Automated Assessment of Digital Test Drives;193
23.5;4 Automated Assessment Concept;194
23.5.1;4.1 HiL System;195
23.5.2;4.2 Assessment Domain;196
23.5.3;4.3 Visualization and Data Analytics Domain;196
23.6;5 Application on Exemplary Driver-Assistance System;197
23.7;6 Conclusion and Outlook;198
23.8;References;198
24;17 HiFi Visual Target—Methods for Measuring Optical and Geometrical Characteristics of Soft Car Targets for ADAS and AD;200
24.1;Abstract;200
24.2;1 Background;200
24.3;2 Soft Car Targets;201
24.4;3 Project Goals;202
24.5;4 Initial Measurements and Results;203
24.5.1;4.1 Measurement Setup;203
24.5.1.1;4.1.1 Optical Measurement Setup;203
24.5.1.2;4.1.2 Geometry Measurement Setup;204
24.5.2;4.2 Preliminary Results;205
24.5.2.1;4.2.1 Optical Measurement Results;205
24.5.2.2;4.2.2 Geometry Variation Due to Assembly;206
24.6;5 Conclusions and Future Work;207
24.7;Acknowledgments;207
24.8;References;207
25;Legal Framework and Impact;209
26;18 Assessing the Impact of Connected and Automated Vehicles. A Freeway Scenario;210
26.1;Abstract;210
26.2;1 Introduction;211
26.3;2 Review of the Literature;211
26.4;3 Case-Study Simulation;212
26.4.1;3.1 The Traffic Model of Antwerp’s Ring Road;213
26.4.2;3.2 Human and CACC Drivers;214
26.4.3;3.3 Assessment Metrics;216
26.4.4;3.4 Simulation Scenarios;217
26.5;4 Results;217
26.5.1;4.1 Energy Consumption;219
26.6;5 Conclusions;220
27;19 Germany’s New Road Traffic Law—Legal Risks and Ramifications for the Design of Human-Machine Interaction in Automated Vehicles;223
27.1;Abstract;223
27.2;1 Introduction;223
27.3;2 The Amendments to the Federal Road Traffic Act;224
27.3.1;2.1 Levels of Automation Addressed;224
27.3.2;2.2 Definition of “Driver”;225
27.3.3;2.3 Interaction Between the Automation System and the Driver;225
27.4;3 The Statutory Amendments from the Driver’s Perspective;226
27.4.1;3.1 Brief Overview of the Statutory Liability Regime for Drivers;226
27.4.2;3.2 Ramifications of the Obligations Imposed on Automated System Users;226
27.4.2.1;3.2.1 Obligation to Use the Automation System Properly;227
27.4.2.2;3.2.2 Sharing of the Driving Task Between the Driver and the Automation System;227
27.5;4 Liability Issues from the Manufacturer’s Perspective;228
27.5.1;4.1 Brief Overview of the Statutory Liability Regime for Manufacturers;228
27.5.2;4.2 Product Liability Issues in Relation to Automated Vehicles;229
27.5.2.1;4.2.1 Constructional Deficiencies;229
27.5.2.2;4.2.2 Instructional Errors;230
27.6;5 Summary;231
27.7;References;232
28;20 Losing a Private Sphere? A Glance on the User Perspective on Privacy in Connected Cars;233
28.1;Abstract;233
28.2;1 Introduction;233
28.3;2 Literature Review;234
28.3.1;2.1 Methodology;234
28.3.2;2.2 Relevant Privacy Factors for the Adoption of Connected Services;235
28.4;3 User Study;238
28.4.1;3.1 Results;238
28.4.2;3.2 Discussion;240
28.5;4 Conclusion and Practical Implications;241