E-Book, Englisch, Band Volume 43, 348 Seiten
From Molecules to Ecosystems
E-Book, Englisch, Band Volume 43, 348 Seiten
Reihe: Advances in Ecological Research
ISBN: 978-0-12-385006-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Advances in: Ecological Research;4
3;Copyright;5
4;Contents;6
5;Contributors to Volume 43;14
6;Preface;16
6.1;References;18
7;Chapter 1: Hutchinson Reversed, or Why There Need to Be So Many Species;20
7.1;Summary;20
7.2;I. Introduction;21
7.3;II. Peculiarities of the Plankton;23
7.4;III. Dispersal Limitation in the Plankton;26
7.5;IV. Present Evidence for B-EF Relationships in the Plankton;31
7.5.1;A. Primary Production and Resource Use;31
7.5.2;B. Resource Use in Heterotrophic Bacteria;31
7.5.3;C. Secondary Production and Trophic Interactions;32
7.5.4;D. Underyielding and Superspecies;33
7.6;V. Mechanisms Underlying Pelagic B-EF Relationships;34
7.6.1;A. Environmental and Trait Dimensionality;34
7.6.2;B. Productivity–Environmental and Trait Dimensionality;39
7.6.3;C. Spectral Coexistence and Stoichiometry;43
7.6.4;D. Stoichiometry of Ecosystem Functioning;45
7.7;VI. Outlook and Conclusions;50
7.8;Acknowledgments;52
7.9;Appendix Ptacnik, Moorthi and Hillebrand: Hutchinson Reversed or Why There Need to be so Many Species;52
7.10;References;52
8;Chapter 2: When Microscopic Organisms Inform General Ecological Theory;64
8.1;Summary;64
8.2;I. Introduction;65
8.3;II. Examples from the Literature: When Small Organisms have Informed General Ecological Theory;76
8.3.1;A. Population, Assemblage and Community Theories;78
8.3.2;B. Higher Level and Synthetic Theories;79
8.4;III. Case Studies: Do Small Worlds Represent Larger Worlds?;80
8.4.1;A. Temperature-Size Rule;81
8.4.2;B. Allometric Scaling of Abundance: Do Protozoansand Metazoans Show the Same Patterns?;86
8.4.3;C. Biodiversity and Ecosystem Functioning;91
8.5;IV. Conclusions;94
8.6;Acknowledgments;96
8.7;Appendix;96
8.8;References;96
9;Chapter 3: Systems Biology for Ecology:...;106
9.1;Summary;107
9.2;I. Introduction;107
9.2.1;A. Towards a Systems Biology for Ecology?;107
9.2.2;B. The Microbial Black Box;110
9.3;II. A Brief History of Molecular Microbial Ecology;111
9.3.1;A. Characterising Diversity, Abundance andFunctional Traits;111
9.3.2;B. Genomics and Post Genomics in Microbial Ecology;114
9.4;III. Next-Generation Sequencing Technologies;115
9.4.1;A. A New Paradigm;115
9.4.2;B. 454 Pyrosequencing (Roche);119
9.4.3;C. Illumina Genome Analyzer;119
9.4.4;D. HeliScope;125
9.4.5;E. SOLiD (Life/Applied Biosystems);127
9.4.6;F. SMRT Technology (Pacific Biosciences);127
9.4.7;G. Improving Analysis of Multiple Samples andIncreasing Read Length in NGS Runs;129
9.5;IV. Genome Sequencing: Functional Diversity in Ecology;132
9.6;V. Transcriptomics: Functional Expression;133
9.7;VI. Application of Sequencing in Ecology;134
9.7.1;A. Unveiling the Planet’s Hidden Biodiversity;134
9.7.2;B. Four Ecological Metagenomic Case Studies;135
9.7.3;C. Moving Beyond Traditional Metagenomics;138
9.7.4;D. Next-Generation Sequencing and Biodiversity;138
9.8;VII. Linking Across Multiple Levels of Organisation: The Key to Understanding the System;141
9.8.1;A. Scaling from Molecules to Ecosystems;141
9.8.2;B. Linking Microbial Community Structure and EcosystemFunctioning;142
9.8.3;C. New Questions in Ecology: Opening the MicrobialBlack Box.;144
9.8.4;D. Functional Redundancy: Do Species Matter?;146
9.8.5;E. Beyond Bacteria: Opening the Eukaryotic Black Box;147
9.8.6;F. Food Webs: Identifying the Missing Links;147
9.8.7;G. NGS and the Link Between Ecology and Evolution;151
9.9;VIII. Socioeconomic Applications: Ecosystem Goods and Services and Bioprospecting;152
9.10;IX. Conclusions;153
9.11;Acknowledgments;154
9.12;References;154
10;Chapter 4: Assessing the Contribution of Micro-Organisms and Macrofauna to Biodiversity-Ecosystem Functioning Relatio;170
10.1;Summary;170
10.2;I. Introduction;171
10.3;II. Material and Methods;174
10.3.1;A. Organisms and Set-Up;174
10.3.2;B. Biomass Determination and Response Variables;176
10.3.3;C. Predictors;177
10.3.4;D. Statistical Analysis;178
10.4;III. Results;179
10.4.1;A. Mono-Cultures;179
10.4.2;B. Richness Effect, Additive Performance and AssemblageIdentity Effects;181
10.4.3;C. Shredder Biomass and Whole Assemblage Metabolism asExplanatory Variables;183
10.5;IV. Discussion;185
10.5.1;A. Species Richness, Identity and Metabolism as Driversof B–EF Relationships;185
10.5.2;B. The Roles of Invertebrates and Fungi in DecompositionProcesses;186
10.5.3;C. Interactions Between Decomposers;188
10.5.4;D. Conclusions;190
10.6;Acknowledgments;190
10.7;Appendix;190
10.8;References;191
11;Chapter 5: Environmental Warming and Biodiversity-Ecosystem Functioning in Freshwater Microcosms...;196
11.1;Summary;197
11.2;I. Introduction;197
11.2.1;A. Climate Change and Biodiversity–EcosystemFunctioning Relationships;197
11.2.2;B. Temperature and Body Size as Drivers of B–EFRelationships;199
11.2.3;C. Local and Regional Effects of Climate Changeon B–EF Relationships;200
11.3;II. Methods;201
11.3.1;A. Study Organisms;201
11.3.2;B. Laboratory Experiments;201
11.3.3;C. Predictor Variables;204
11.3.4;D. Response Variables;205
11.3.5;E. Statistical Methods;206
11.4;III. Results;207
11.4.1;A. Microbial-Only Mediated Leaf Decomposition;207
11.4.2;B. Differences Between Consumers;207
11.4.3;C. Leaf Decomposition: Within Regions;209
11.4.4;D. Leaf Decomposition: Across Regions;210
11.4.5;E. LPE: Within Regions;211
11.4.6;F. LPE: Across Regions;213
11.5;IV. Discussion;213
11.5.1;A. Drivers of Ecosystem Functioning;213
11.5.2;B. Species Richness and Identity Effects;215
11.5.3;C. Incorporating Metabolic Constraints in B–EFExperiments;216
11.6;V. Conclusion;217
11.7;Acknowledgments;218
11.8;Appendix I. Water nutrient comparison across regions;218
11.9;Appendix II. Intraspecific body mass-metabolism relationships for freshwater invertebrates;219
11.10;Appendix III. Testing the validity of MC calculations and deriving an empirical normalisation constant for Eq.-3;220
11.11;Appendix IV. Temperature dependence of leaf decomposition: Comparing intra- and interspecific relationships and expected value;222
11.12;Appendix V. Results for microbial-only treatments;222
11.13;Appendix VI. ANOVA with factor "Richness" retained;223
11.14;References;223
12;Chapter 6: Individual-Based Food Webs;230
12.1;I. Introduction;231
12.1.1;A. Recent Advances in Food Web Data and Theory;231
12.1.2;B. Species Identity and Body Size as Determinantsof Food Web Structure;234
12.1.3;C. Identifying the Relevant Entities and SuitableMeasures of Body Size;236
12.1.4;D. Coupling Size- and Species-Based Approacheswith Individual-Level Data;237
12.2;II. Methods and Study Sites;239
12.2.1;A. Study Sites and Empirical Data Collection;239
12.2.2;B. Construction of the Food Webs;243
12.2.3;C. Modelling and Analyses;243
12.3;III. Results;244
12.3.1;A. General Properties of Empirical Food Webs andComparisons Between Models and Data;244
12.3.2;B. Specific Properties of Each Empirical Food Web andComparisons Between Models and Data;246
12.3.3;C. Seasonal and Ontogenetic Shifts Within the BroadstoneStream Food Web;264
12.4;IV. Discussion;267
12.4.1;A. Size-Based and Species-Based Food Webs;267
12.4.2;B. Understanding the High Explanatory Power ofthe ADBM;271
12.4.3;C. Explaining ‘Missing’ and ‘Unlikely’ Links;272
12.4.4;D. Seasonal and Ontogenetic Effects;274
12.4.5;E. Implications, Caveats, and Future Directions;275
12.5;Acknowledgments;278
12.6;Electronic Appendices;278
12.7;References;279
13;Chapter 7: The Temperature Dependence of the Carbon Cycle in Aquatic Ecosystems;286
13.1;Summary;287
13.2;I. Introduction;287
13.2.1;A. The Ecological Consequences of Global Warming;287
13.2.2;B. Carbon Cycling Within an Ecosystem:A Tractable Model;290
13.2.3;C. Predicting the Effects of Warming: Combining Theory,Experiments and Empirical Data;293
13.2.4;D. Aims of the Study;295
13.3;II. Theoretical Framework;295
13.3.1;A. Carbon Fluxes at the Individual-Level;295
13.3.2;B. Relating Individual-Level Fluxes to Ecosystem Processes:The Temperature Dependence of the AquaticCarbon Cycle;296
13.3.3;C. Relating Individual-Level Fluxes to Ecosystem Processes:The Carbon Balance;300
13.4;III. Materials and Methods;301
13.4.1;A. Study Site and Experimental Design;301
13.4.2;B. Measuring Primary Production and Respiration;302
13.4.3;C. Measuring Methane Efflux;303
13.4.4;D. Dissolved Methane;304
13.4.5;E. Statistical Analyses;305
13.4.6;F. Literature Data Compilation and Meta-Analysis;305
13.5;IV. Results;306
13.5.1;A. Ecosystem-Level Carbon Fluxes: Experimental Tests;306
13.5.2;B. Ecosystem-Level Carbon Fluxes: Meta-Analysis ofField Survey Data;309
13.5.3;C. The Carbon Balance;311
13.6;V. Discussion;316
13.6.1;A. The Temperature Dependence of the Key Componentsof the Carbon Cycle;316
13.6.2;B. The Carbon Balance of Aquatic Ecosystems;321
13.6.3;C. Conclusions, Caveats and Further Study;322
13.7;Acknowledgments;324
13.8;Appendix I. Potential confounding variables and supplementary information;324
13.9;References;328
13.10;Advances in Ecological Research Volume 1–43: Cumulative List of Titles;342