Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
E-Book, Deutsch, 231 Seiten, eBook
Reihe: Springer-Lehrbuch
Wittenburg Schwingungslehre
1996
ISBN: 978-3-642-58286-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Lineare Schwingungen, Theorie und Anwendungen
E-Book, Deutsch, 231 Seiten, eBook
Reihe: Springer-Lehrbuch
ISBN: 978-3-642-58286-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
Komplexe Zahlen in der Schwingungslehre.- Stabilität und Instabilität.- 1 Systeme mit einem Freiheitsgrad.- 1.1 Ungedämpfte Eigenschwingungen.- 1.2 Gedämpfte Eigenschwingungen.- 1.3 Erzwungene Schwingungen.- Aufgaben zu Kapitel 1.- 2 Systeme mit endlich vielen Freiheitsgraden.- 2.1 Formulierung von Bewegungsgleichungen.- 2.2 Eigenschwingungen ungedämpfter mechanischer Systeme.- 2.3 Approximation der niedrigsten Eigenkreisfrequenz.- 2.4 Eigenschwingungen allgemeiner linearer Systeme.- 2.5 Erzwungene Schwingungen ohne Dämpfung.- 2.6 Erzwungene Schwingungen mit Dämpfung.- 2.7 Entkopplung der inhomogenen Gleichungen.- 2.8 Aufgaben zu Kapitel 2.- 3 Parametererregte Schwingungen.- 3.1 Das Pendel mit veränderlicher Länge.- 3.2 Periodische Parametererregung.- 3.3 Parametererregte n-Freiheitsgrad-Systeme.- 4 Eindimensionale Kontinua.- 4.1 Die Wellengleichung.- 4.2 Lösungen der Wellengleichung nach d’Alembert.- 4.3 Bernoulli-Lösungen der Wellengleichung.- 4.4 Biegeschwingungen von Stäben.- Literatur.