Wirth | Weighted Automata, Formal Power Series and Weighted Logic | Buch | 978-3-658-39322-9 | sack.de

Buch, Englisch, 190 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 271 g

Reihe: Research

Wirth

Weighted Automata, Formal Power Series and Weighted Logic

Buch, Englisch, 190 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 271 g

Reihe: Research

ISBN: 978-3-658-39322-9
Verlag: Springer


The main objective of this work is to represent the behaviors of weighted automata by expressively equivalent formalisms: rational operations on formal power series, linear representations by means of matrices, and weighted monadic second-order logic. 
First, we exhibit the classical results of Kleene, Büchi, Elgot and Trakhtenbrot, which concentrate on the expressive power of finite automata. We further derive a generalization of the Büchi–Elgot–Trakhtenbrot Theorem addressing formulas, whereas the original statement concerns only sentences. Then we use the language-theoretic methods as starting point for our investigations regarding power series. We establish Schützenberger’s extension of Kleene’s Theorem, referred to as Kleene–Schützenberger Theorem. Moreover, we introduce a weighted version of monadic second-order logic, which is due to Droste and Gastin. By means of this weighted logic, we derive an extension of the Büchi–Elgot–Trakhtenbrot Theorem. Thus, we point out relations among the different specification approaches for formal power series. Further, we relate the notions and results concerning power series to their counterparts in Language Theory. 
Overall, our investigations shed light on the interplay between languages, formal power series, automata and monadic second-order logic.
Wirth Weighted Automata, Formal Power Series and Weighted Logic jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Languages, Automata and Monadic Second-Order Logic.- Weighted Automata.- The Kleene–Schützenberger Theorem.- Weighted Monadic Second-Order Logic and Weighted Automata.- Summary and Further Research.


Laura Wirth completed her Master's thesis in Mathematics at the University of Konstanz in 2022. It was supervised by Prof. Salma Kuhlmann as well as Prof. Sven Kosub and received the highest grade with honors.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.