Buch, Englisch, 495 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 934 g
Reihe: CMS Books in Mathematics
Buch, Englisch, 495 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 934 g
Reihe: CMS Books in Mathematics
ISBN: 978-0-387-84922-5
Verlag: Springer
Pell’s Equation is a very simple Diophantine equation that has been known to mathematicians for over 2000 years. Even today research involving this equation continues to be very active, as can be seen by the publication of at least 150 articles related to this equation over the past decade. However, very few modern books have been published on Pell’s Equation, and this will be the first to give a historical development of the equation, as well as to develop the necessary tools for solving the equation.
The authors provide a friendly introduction for advanced undergraduates to the delights of algebraic number theory via Pell’s Equation. The only prerequisites are a basic knowledge of elementary number theory and abstract algebra. There are also numerous references and notes for those who wish to follow up on various topics.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Kryptologie, Informationssicherheit
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
Early History of the Pell Equation.- Continued Fractions.- Quadratic Number Fields.- Ideals and Continued Fractions.- Some Special Pell Equations.- The Ideal Class Group.- The Analytic Class Number Formula.- Some Additional Analytic Results.- Some Computational Techniques.- (f, p) Representations of -ideals.- Compact Representations.- The Subexponential Method.- Applications to Cryptography.- Unconditional Verification of the Regulator and the Class Number.- Principal Ideal Testing in.- Conclusion.