Watson | Omega-3 Fatty Acids in Brain and Neurological Health | E-Book | sack.de
E-Book

E-Book, Englisch, 496 Seiten

Watson Omega-3 Fatty Acids in Brain and Neurological Health

E-Book, Englisch, 496 Seiten

ISBN: 978-0-12-410547-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Research has clearly established a link between omega-3 fatty acids and general health, particularly cardiovascular health. Omega-3 Fatty Acids in Brain and Neurological Health is the first book to focus exclusively on the role of omega-3 fatty acids on general brain health. The articles in this collection illustrate omega-3 fatty acids' importance in longevity, cognitive impairment, and structure and function of the brain's neurons. Research has established links between omega-3 fatty acids and the developing brain, aging, dementia, Alzheimer's disease and multiple sclerosis. This book encompasses some of the most recent research, including the role of omega-3 fatty acid supplements on hippocampal neurogenesis, substantia nigra modulation, migraine headaches, the developing brain in animals, sleep, and neurodegenerative diseases. This collection helps to push research forward toward a complete understanding of omega-3 fatty acids' relationship to brain and neurological health. - The first book-length collection of original research on the connection between omega-3 fatty acids and the brain - Provides a comprehensive introduction to the state of research on omega-3 fatty acids and the brain and directions for future research - A foundational collection for neuroscience, neurology, and nutrition research
Watson Omega-3 Fatty Acids in Brain and Neurological Health jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Omega-3 Fatty Acids in Brain and Neurological Health;4
3;Copyright Page;5
4;Contents;6
5;Preface;12
6;List of Contributors;14
7;Acknowledgments;18
8;1 Enhanced Longevity and Role of Omega-3 Fatty Acids;20
8.1;Introduction;20
8.2;Longevity;20
8.3;Food Restriction for Enhanced Longevity;21
8.4;Calorie Restriction for Longevity;21
8.5;Smoking and Reduced Longevity;21
8.6;Genetics, a Key Modifier of Longevity;22
8.7;Genetic Diseases and Longevity;22
8.8;Genomics;23
8.9;Environmental Factors and Longevity;23
8.10;Animal Tests and Longevity;24
8.11;Omega-3 Fatty Acids and Longevity;24
8.12;References;25
8.13;Further Reading;26
9;2 Molecular Gerontology: Principles and Perspectives for Interventions;28
9.1;Introduction;28
9.1.1;Homeostasis Versus Homeodynamics;28
9.2;Molecular Basis of Aging;29
9.2.1;Free Radical Theory of Aging;29
9.2.2;Protein Error Theory of Aging;30
9.2.3;From FRTA and PETA to Higher Order Theories;30
9.3;Genetics, Post-Genetics, and Epigenetics of Aging;30
9.3.1;Epigenetics of Aging;31
9.4;Aging Interventions;31
9.4.1;Gene Therapy;31
9.4.2;Manipulating the Milieu;33
9.5;Hormetics, Hormesis, and Hormetins;33
9.6;References;34
10;3 Peroxisomal Pathways, their Role in Neurodegenerative Disorders and Therapeutic Strategies;38
10.1;Peroxisomes;38
10.1.1;Ether Lipid Synthesis;38
10.1.2;a-oxidation;39
10.1.3;ß-oxidation;39
10.2;Peroxisomal Pathologies;42
10.3;Leukodystrophies;43
10.3.1;X-linked Adrenoleukodystrophy;43
10.3.2;Lipid and Steroid Hormone Modifications;44
10.3.3;Biological Markers of X-ALD;44
10.4;Therapeutic Strategies;44
10.4.1;Fatty Acids and Dietary Intervention;45
10.4.2;Hormone Replacement Therapy;46
10.4.3;Gene Therapy;46
10.5;Demyelination and Other Leukodystrophies;46
10.6;Conclusion;47
10.7;References;47
11;4 Unregulated Lipid Peroxidation in Neurological Dysfunction;50
11.1;Introduction;50
11.2;Lipid Oxidation Biomarkers for Neurological Dysfunction;51
11.3;Lipid Peroxidation Products from Linoleic Acid;51
11.4;Lipid Peroxidation Products from AA;51
11.4.1;Hydroxyeicosatetraenoic Acids;51
11.4.2;F2-Isoprostanes;52
11.4.3;Isofurans;52
11.4.4;Lipid Peroxidation Products from Docosahexaenoic Acid;53
11.4.4.1;Neuroprostanes;53
11.4.4.2;Neurofurans;53
11.4.4.3;Lipid Peroxidation-Derived Short-Chain Aldehydes;53
11.4.5;Lipid Peroxidation Products from Cholesterol;54
11.5;Neurological Dysfunction Associated with Lipid Peroxidation;56
11.6;Mechanisms of Free Radical Production in Neurological Disorders;57
11.6.1;Alzheimer’s Disease;57
11.6.2;Parkinson’s Disease;57
11.6.3;Amyotrophic Lateral Sclerosis;60
11.6.4;Stroke;61
11.6.5;Down Syndrome;61
11.6.6;Other Neurological Dysfunctions in Childhood;62
11.6.6.1;Therapeutic Intervention with Antioxidants for Neurological Dysfunction;62
11.7;References;63
11.8;Additional References;70
12;5 Obesity, Western Diet Intake, and Cognitive Impairment;76
12.1;Obesity and Cognitive Impairment;76
12.2;Western Diet Intake and Cognitive Impairment;77
12.2.1;Western Diet Intake and Cognitive Impairment: Underlying Neuroendocrine Mechanisms;78
12.3;Summary;80
12.4;References;80
13;6 Genetic Risk Factors for Diabetic Neuropathy;82
13.1;Diabetes Mellitus and Its Complications;82
13.2;Diabetic Neuropathy: General Characteristics;82
13.3;Risk Factors for Diabetic Neuropathy and pathophysiological Mechanisms;82
13.4;Genetic Risk Factors for Diabetic Neuropathy;83
13.5;Potential Use of Genetic Risk Factors in Clinical Practice;85
13.6;References;86
14;7 n-3 Fatty Acid-Derived Lipid Mediators against Neurological Oxidative Stress and Neuroinflammation;88
14.1;Overview;88
14.2;DHA in the Brain;89
14.3;EPA-Derived Lipid Mediators in the Brain;90
14.3.1;DHA-derived Lipid Mediators in the Brain;92
14.3.2;DHA-derived D-series Resolvins;92
14.3.3;DHA-derived Protectins and Neuroprotectins;92
14.3.4;Effect of EPA and DHA in Neurological Disorders;95
14.4;Conclusion;97
14.5;References;97
15;8 The Impact of Omega-3 Fatty Acids on Quality of Life;100
15.1;Introduction;100
15.2;Assessment of QoL;100
15.3;Current Evidence on Omega-3 Fatty Acids and QoL;101
15.3.1;Evidence from Observational Studies;101
15.3.2;Evidence from Clinical Trials;102
15.4;Discussion;102
15.5;Conclusion and Recommendations;103
15.6;References;103
16;9 Mammalian Fatty Acid Amides of the Brain and CNS;106
16.1;Introduction;106
16.1.1;Primary Fatty Acid Amides;106
16.1.2;N-Acylethanolamines (NAEs);109
16.1.3;N-Acyl Amino Acids (NAAs);112
16.1.3.1;NAGs, a Specific Class of the NAAs;113
16.1.4;N-Acyl Taurines, a Specific Class of the NAAs;116
16.1.4.1;Other N-Acyl Amino Acids;117
16.1.4.2;N-Acyldopamines;118
16.2;The Relevance of the Fatty Acid Amides to Neurological Disease;118
16.3;Acknowledgements;121
16.4;References;121
17;10 Low Omega-3 Fatty Acids Diet and the Impact on the Development of Visual Connections and Critical Periods of Plasticity;128
17.1;Introduction;128
17.2;Nutrition and the Impact of Omega-3 Fatty Acids on Brain Development;128
17.3;The Development of Visual Topographical Maps;131
17.4;Critical Periods for Brain Development;132
17.5;Role of Omega-3 on Development of Central Visual Connections;133
17.6;References;136
18;11 The Effects of Omega-3 Polyunsaturated Fatty Acids on Maternal and Child Mental Health;140
18.1;Introduction;140
18.2;The Role of Omega-3 Fatty Acids in Neurotransmission;140
18.3;DHA and Maternal Mental Health;141
18.3.1;Postpartum Depression;141
18.3.2;Omega-3 Fatty Acids in Postpartum Depression;142
18.4;Omega-3 Fatty Acids and Child Mental Health;142
18.4.1;Neurodevelopmental Outcomes: Infancy through Childhood;142
18.4.1.1;Infancy;142
18.4.1.2;Childhood;143
18.4.2;Childhood Developmental Disorders;143
18.4.2.1;Attention Deficit Hyperactivity Disorder;144
18.4.2.2;Childhood Depression;144
18.4.3;Autistic Spectrum Disorders;145
18.5;Conclusion;145
18.6;References;146
19;12 Pain as Modified by Polyunsaturated Fatty Acids;150
19.1;Introduction;150
19.2;Factors Involved in the Supply and Physiological Function of Fatty Acids in the Brain;151
19.2.1;Blood–Brain Barrier;151
19.2.2;Fatty Acid Transporter Protein;152
19.2.3;Fatty Acid Binding Protein;152
19.2.4;Long-Chain Fatty Acid Receptor GPR40;153
19.2.5;Toll Like Receptor 4;153
19.3;Involvement of Lipids, Fatty Acids, and Their Metabolites in Pain Regulation;153
19.3.1;Dietary Lipids;153
19.3.1.1;Omega-3 Fatty Acids;154
19.3.1.2;DHA;154
19.3.1.3;Metabolites Derived from Omega-3 Fatty Acids;155
19.3.2;Omega-6 Fatty Acids and Their Metabolites;157
19.3.3;Prostaglandins;157
19.3.4;Leukotrienes;159
19.3.5;Platelet-Activating Factor;159
19.3.6;Lysophosphatidic Acid;160
19.4;Future Prospects;160
19.5;References;161
20;13 Fish Oil Supplementation Prevents Age-Related Memory Decline: Involvement of Nuclear Hormone Receptors;166
20.1;Introduction;166
20.2;Effects of Aging on Incorporation of Docosahexaenoic Acid in Brain Phospholipids;166
20.3;Effects of Aging on DHA Biosynthesis;167
20.3.1;DHA is Involved in Learning and Memory;168
20.4;Dietary Fish Oil and Prevention of Age-Related Memory Decline;169
20.4.1;Animal Studies;169
20.4.2;Human Studies;171
20.5;DHA Improves Synaptic Plasticity During Aging: Involvement of Retinoid X Receptors and Peroxisome Proliferator-Activated Re...;172
20.6;Summary and Concluding Remarks;174
20.7;References;176
21;14 Role of Omega-3 Fatty Acids in Brain and Neurological Health with Special Reference to Clinical Depression;182
21.1;Introduction;182
21.2;Omega-3 Fatty Acids;182
21.2.1;Factors that Interfere with Conversion of ALA;183
21.2.1.1;Omega-3 to Omega-6 Ratio;183
21.2.1.2;Genetic Factors;184
21.2.1.3;Dietary and Lifestyle Factors;184
21.2.1.3.1;Saturated fat – trans-fat;184
21.2.1.3.2;Caffeine, Nicotine, Alcohol, Sugar;184
21.2.1.3.3;Stress;184
21.2.1.4;Co-nutrients;184
21.3;Status of Omega-3 Fatty Acids in Clinical Depression;184
21.3.1;Nutrient Co-Factor Deficiencies;185
21.3.1.1;Zinc Deficiency;185
21.3.1.2;Selenium Deficiency;185
21.3.1.3;Folic Acid Deficiency;185
21.3.1.4;Antioxidants;185
21.3.1.5;Vitamin B6, Tryptophan, and Serotonin;186
21.3.1.6;Omega-3 Fatty Acids;186
21.4;Neurological Alterations in Depression;186
21.5;Possible Mechanisms for Links Between Omega-3 Fatty Acids and Depression;188
21.5.1;Omega-3 Fatty Acids Affect Cell Membrane Integrity and Fluidity;188
21.5.2;Omega-3 Fatty Acids Decrease the Production of Pro-Inflammatory Cytokines;189
21.5.3;Omega-3 Fatty Acids and Hippocampal Neurogenesis;189
21.6;Impact of Diet on AHN;189
21.7;Clinical Trials Supporting the Role of Omega-3 Fatty Acids in MDD;190
21.8;Conversion of ALA to EPA and DHA from Flax Seed Oil;192
21.9;Probable Mode of Action of Flax Seed Oil in Depression;192
21.10;Conclusion;194
21.11;References;195
21.12;Further Reading;198
22;15 Omega-3 Fatty Acid Supplementation for Major Depression with Chronic Disease;200
22.1;Introduction;200
22.2;Omega-3 Fatty Acids;200
22.2.1;Major Depressive Disorder;201
22.2.2;Omega-3 Fatty Acids and Depression;201
22.2.3;Effects of Omega-3 Fatty Acids on Depression with Cardiovascular Disorders;202
22.2.4;Effects of Omega-3 Fatty Acids on Depression with Diabetes;202
22.2.5;Effects of Omega-3 Fatty Acids on Depression and Pregnancy;203
22.2.6;Effects of Omega-3 Fatty Acids on Depression and Old Age;203
22.2.7;Effect of Omega-3 Fatty Acids on Anxiety and Depression in Students;203
22.3;Summary;204
22.4;References;204
23;16 The Effectiveness of Fish Oil as a Treatment for ADHD;206
23.1;A review of the Literature;206
23.1.1;Purpose;207
23.1.2;Analyzing the Studies;207
23.1.3;Findings;207
23.1.3.1;The Effect of Fish Oil on the Behavioral/Physical Symptoms of ADHD;209
23.1.3.1.1;Omega 3;209
23.1.3.1.2;Omega-3 and Omega-6;210
23.1.3.1.3;Combination of Essential Fatty Acids and other Supplements;211
23.1.3.2;Fatty Acid Levels in Blood of Patients with ADHD;212
23.1.3.2.1;Omega 3;212
23.1.3.2.2;No Supplements were Given;212
23.2;Conclusion;212
23.2.1;Final Thought;217
23.3;References;217
23.4;Further Reading;218
24;17 Fatty Acids and the Aging Brain;220
24.1;Introduction;220
24.2;Physiologic Brain Aging;221
24.2.1;Structural Changes;221
24.2.1.1;Macro-Structural Changes;221
24.2.1.2;Micro-Structural Changes;222
24.2.2;Chemical Changes;222
24.2.2.1;Dopamine;222
24.2.2.2;Serotonin;222
24.2.2.3;Glutamate;223
24.2.3;Cognitive Changes;223
24.2.3.1;Changes in Attention;223
24.2.3.2;Changes in Memory;223
24.2.3.3;Changes in Orientation;224
24.2.3.4;Changes in Perception;224
24.2.3.5;Changes in Executive Control;224
24.3;Fatty Acids and Brain Aging;224
24.3.1;Fatty Acid Basics: An Introduction to the Biochemistry of Fatty Acids;224
24.3.2;Fatty Acid Composition of the Brain;225
24.3.3;Omega Fatty Acids;225
24.4;Function of Omega-3 Fatty Acids in the Brain;225
24.4.1;Neural Mechanisms;225
24.4.1.1;Neurogenesis;225
24.4.1.2;Neurotransmission;226
24.4.1.3;Reduction of Amyloid-ß Production;226
24.4.1.4;Increasing Brain-Derived Neurotrophic Factor;226
24.4.2;Vascular Mechanisms;226
24.4.2.1;Reduction of Inflammation;226
24.4.2.2;Lowering of Thrombosis;226
24.4.2.3;Blood Pressure Reduction;227
24.4.2.4;Lowering Triglyceride Levels;227
24.5;Sources of Omega Fatty Acids;227
24.6;Omega Fatty Acid Metabolism;227
24.7;Pathological Brain Aging;228
24.7.1;Alzheimer’s Disease;228
24.7.1.1;Disease Characteristics;228
24.7.1.1.1;Structural Differences from Normal Aging;228
24.7.1.1.2;Chemical Differences;229
24.7.1.1.3;Cognitive Differences;229
24.7.1.2;Disease Mechanisms;229
24.7.2;Vascular Dementia;230
24.7.3;Disease Characteristics;230
24.7.3.1;Structural Changes;230
24.7.3.2;Cognitive Changes;230
24.7.3.3;Chemical Changes;230
24.7.3.4;Disease Mechanisms;230
24.7.4;Mixed Dementia;230
24.8;Protective Effect of Omega-3 Fatty Acids against Dementia;231
24.9;Conclusion;232
24.10;References;232
24.11;Further Reading;238
25;18 Cerebrovascular Changes: The Role of Fat and Obesity;240
25.1;Introduction;240
25.2;Vascularization of the Brain;240
25.2.1;The Blood–Brain Barrier;241
25.3;Effects of a High Fat Diet and Obesity on Overall Health and Proposed Mechanisms;241
25.3.1;Clinical Studies: Vascular Changes Due to a High Fat Diet and Obesity;242
25.3.2;Animal Studies: Vascular Changes Due to a High Fat Diet and Obesity;243
25.3.3;Impact of Omega-3 Fatty Acids on Vascular Health;245
25.4;Conclusion;245
25.5;References;246
26;19 Effects of Omega-3 Fatty Acids on Alzheimer’s Disease;250
26.1;Introduction;250
26.1.1;Omega-3 Fatty Acids Biology in Health;250
26.2;Alzheimer’s Disease;250
26.3;Omega-3 Fatty Acid: a Role in Alzheimer’s Disease?;251
26.3.1;DHA Deficiency and Neurological Function Affected by Diabetes in Alzheimer’s Disease;251
26.3.2;Animal Models, Diabetes, and Alzheimer’s Disease;252
26.3.3;Omega-3 Fatty Acids in Prevention and Treatment of Alzheimer’s Disease;253
26.4;References;254
27;20 Substantia Nigra Modulation by Essential Fatty Acids;256
27.1;Importance of Essential Fatty Acids as Neuroprotectors During Brain Development and Aging;256
27.2;Substantia Nigra Vulnerability to Neurodegeneration;257
27.3;Substantia Nigra Dopamine Cell Populations Display Differential Vulnerability to Lesions;258
27.4;Repercussion of EFA Deficiency or Supplementation on Midbrain Dopaminergic Systems;259
27.5;Potential Mechanisms Involved in Substantia Nigra Dopamine Cell Loss Induced by EFA Dietary Restriction;260
27.6;Acknowledgments;264
27.7;References;264
27.8;Further Reading;268
28;21 The Role of Omega-3 Fatty Acids in Hippocampal Neurogenesis;270
28.1;Introduction;270
28.1.1;Adult Neurogenesis;271
28.2;Measurement of Neurogenesis (Markers of Proliferation);271
28.2.1;Omega-3 PUFAs and Hippocampal Neurogenesis;272
28.3;Developmental Neurogenesis;272
28.4;Adult Hippocampal Neurogenesis;273
28.4.1;Mechanisms of Action;273
28.5;References;278
29;22 Imaging Brain DHA Metabolism in Vivo, in Animals, and Humans;284
29.1;Introduction;284
29.2;Quantitative Imaging of Brain DHA Metabolism in Rodents;284
29.2.1;Incorporation of Circulating PUFAs into Brain Membrane Lipids;284
29.2.2;Methods and models for determining PUFA incorporation into brain;286
29.2.3;Imaging Membrane Synthesis;287
29.2.3.1;Neuroplasticity with Ocular Enucleation;287
29.2.3.2;Brain Tumor Imaging;287
29.2.4;Upregulated DHA and AA Releasing Enzymes in an Animal Model of the Metabolic Syndrome;288
29.2.5;Neurotransmission;288
29.2.5.1;Human Mutations and Mouse Knockouts of iPLA2ß;289
29.2.6;Quantitative Imaging of Brain DHA Metabolism in Human Subjects;290
29.2.6.1;Baseline Brain DHA Incorporation;290
29.2.6.2;Upregulated Incorporation Coefficients in Chronic Alcoholics;290
29.3;Summary and Conclusions;291
29.4;Acknowledgments;292
29.5;References;292
30;23 Obesity and Migraine in Children;296
30.1;Introduction;296
30.2;Epidemiological Relationship Between Migraine and Obesity;296
30.2.1;Comorbidity;297
30.2.2;Cognitive Profile, Migraine, and Obesity;298
30.3;Proposed Mechanism for the Relationship Between Obesity and Migraine;298
30.3.1;Lifestyle Factors;299
30.4;Influence of Weight Loss on Chronic Headache in Obese People and Effects of the Preventive Treatment of Migraine on Weight ...;300
30.5;Conclusions;302
30.6;References;302
31;24 Dietary Omega-3 Sources during Pregnancy and the Developing Brain: Lessons from Studies in Rats;306
31.1;Introduction;306
31.2;ALA Supplementation and Brain Fatty Acid Composition;307
31.3;Long-chain Omega-3 PUFA Supplementation and Brain Fatty Acid Composition;310
31.4;Direct Comparison of ALA and Long-chain Omega-3 PUFA Supplementation on Brain Fatty Acid Composition;316
31.5;Conclusions;316
31.6;References;320
32;25 Omega-3 Fatty Acids and Cognitive Behavior;322
32.1;Introduction;322
32.1.1;Infants and Children;322
32.1.2;Maternal Supplementation;323
32.1.3;Supplementation During Infancy;326
32.1.4;Supplementation During Childhood;328
32.1.5;Young Adults;330
32.1.6;Older Adults;333
32.2;Epidemiological Studies: The Association Between Omega-3 PUFA Intake, Omega-3 PUFA Levels, and Cognitive Decline;333
32.2.1;RCTs: Healthy Older Adults;338
32.2.2;RCTs: Older Adults with Mild Cognitive Impairment or Alzheimer’s Disease;338
32.3;Conclusion;341
32.4;References;341
33;26 Lipids and Lipid Signaling in Drosophila Models of Neurodegenerative Diseases;346
33.1;Introduction;346
33.2;Drosophila as a Model System of Neurodegenerative Diseases;346
33.2.1;Genetic Tools for Making Neurodegenerative Disease Models in Drosophila;346
33.2.1.1;P-Element-Mediated Mutagenesis;346
33.2.1.2;UAS-GAL4-Based Gene Expression System;347
33.2.1.3;Reporters for Amyloid Precursor Protein .-secretase Activity in Drosophila;348
33.2.2;Representative Drosophila Models for Neurodegenerative Diseases;348
33.3;Effects of Lipids and Lipid Signaling on Drosophila Models of Neurodegenerative Diseases;349
33.3.1;Effects of PUFA and Cholesterol Levels on Drosophila AD Models Expressing Human Aß42;349
33.3.2;Effect of Phosphatidylethanolamine Depletion on .-secretase-Mediated APP Processing in Transgenic Drosophila;351
33.3.3;Effects of Lipid Signaling Enzyme Diacylglycerol Kinase e Inhibition on Mutant Huntingtin Toxicity;351
33.3.4;Drosophila Mutant of Very Long-Chain Acyl Coenzyme a Synthetase and Glyceryl Trioleate Oil;351
33.3.5;Lipids, TRP Channels, and Neurodegeneration in Drosophila;352
33.4;Points to Consider When Drosophila Models are Used for Studying the Role of Lipids;353
33.5;Perspective;353
33.6;References;354
34;27 Polyunsaturated Fatty Acids in Relation to Sleep Quality and Depression in Obstructive Sleep Apnea Hypopnea Syndrome;356
34.1;Introduction;356
34.2;OSAHS;356
34.2.1;Sleepiness;357
34.2.2;OSAHS and Associated Complications;357
34.2.3;Polyunsaturated Fatty Acids;357
34.2.4;PUFAs and Health;358
34.2.5;Depression;359
34.2.6;Link Between PUFAs and Depression in OSAHS;359
34.2.7;Sleep Quality;361
34.2.8;Link Between PUFAs and Sleep Quality in OSAHS;361
34.3;Conclusion;364
34.4;References;364
34.5;Further Reading;366
35;28 Omega-3 Fatty Acids in Intellectual Disability, Schizophrenia, Depression, Autism, and Attention-Deficit Hyperactivity D...;368
35.1;Introduction;368
35.2;Background;368
35.3;Plasma Lipids in Adults with Intellectual Disability and the Efficacy of Omega-3 Fatty Acids;369
35.3.1;Adrenoleukodystrophy and Adrenomyeloneuropathy;369
35.3.2;Fatty Acid, Lipid, and Cholesterol Levels;370
35.4;Plasma Lipids in Schizophrenia and the Efficacy of Omega-3 Fatty Acids;371
35.5;Plasma Lipids in Depressive Illness and Efficacy of Omega-3 Fatty Acids;372
35.6;Plasma Lipids in Autism and Efficacy of Omega-3 Fatty Acids;373
35.7;Plasma Lipids in ADHD and Efficacy of Omega-3 Fatty Acids;374
35.8;Conclusions;374
35.9;References;375
36;29 Effect of Omega-3 Fatty Acids on Aggression;378
36.1;Introduction;378
36.2;First Trial of Omega-3 PUFAs and Aggression in Young Adults;378
36.2.1;Effect of Omega-3 PUFAs on Aggression in Schoolchildren;379
36.2.2;Effect of Omega-3 PUFAs on Aggression in the Elderly;379
36.2.3;Effect of Omega-3 PUFAs on Aggression in Prisoners;380
36.2.4;Effect of Omega-3 PUFAs on Aggression in Patients with ADHD;380
36.2.5;Association Between Omega-3 PUFAs and Hostility in Patients with Schizophrenia;380
36.2.6;Mechanism of Action of Omega-3 PUFAs;380
36.2.6.1;Serotonin;380
36.2.6.2;Noradrenalin;381
36.2.6.3;Cortical-Hippocampal-Amygdala Pathway;381
36.2.6.4;Endocannabinoids;381
36.2.6.5;Brain-Derived Neurotrophic Factor;381
36.3;Conclusion;381
36.4;References;383
37;30 Multiple Sclerosis: Modification by Fish Oil;386
37.1;Introduction;386
37.2;Overview;386
37.3;Cellular Level of Multiple Sclerosis;387
37.4;Omega-3 Supplementation of MS Patients;388
37.5;Varying Results Amongst Researchers;388
37.6;Summary;389
37.7;Acknowledgement;390
37.8;References;390
38;31 Deuterium Protection of Polyunsaturated Fatty Acids against Lipid Peroxidation: A Novel Approach to Mitigating Mitochond...;392
38.1;Introduction;392
38.2;PUFAs in Mitochondrial Membranes and Oxidative Stress;392
38.3;Mitochondrial Dysfunction, Oxidative Stress, and PD;394
38.4;Isotope Protection of PUFAS Against autoxidation;395
38.5;Yeast Models Confirm the Non-Linear Protective Effect of D-PUFAs in vivo;397
38.6;Isotope Reinforcement of PUFA in Pre-Clinical PD Modeling;397
38.6.1;Pre-Clinical Efficacy;399
38.7;Conclusion;399
38.8;References;400
39;32 Obesity, Cognitive Functioning, and Dementia: A Lifespan Prospective;404
39.1;Introduction;404
39.2;Weight-Related Variables and Dementia;404
39.2.1;Prospective Studies with a Focus on Dementia;406
39.2.2;Prospective Studies Focusing on Cognitive Functioning;407
39.3;Weight and Cognitive Function: Role of CVD Factors;408
39.3.1;Interactions of Obesity and CVD Risk Factors;409
39.3.2;Controls and Potential Mediators;409
39.4;Initial Summary;410
39.5;MetS;410
39.6;Mechanisms: General;411
39.7;Early Influences on Relations between Obesity and Cognition;412
39.8;Morbid Obesity and Clinically Important Cognitive Deficit;413
39.9;Treatment of Overweight and Obesity;414
39.10;Treatment of Obesity with Omega-3 Fatty Acids;415
39.11;Omega-3 Fatty Acid Mechanisms for Reducing Weight Loss;416
39.12;Methodologies: General Issues;416
39.12.1;Measurement of Cognitive Function;416
39.12.2;Diagnosis of Dementia;417
39.12.3;Formal Definitions of Mild Cognitive Impairment;417
39.12.4;Prospective Designs;417
39.12.5;Neuroimaging Studies;417
39.12.6;Trials;417
39.13;Final Summary and Conclusions;417
39.14;References;418
40;33 Dairy Products and Cognitive Functions;422
40.1;Introduction;422
40.2;Review of the Literature;422
40.3;Early Cross-Sectional and Prospective Research Findings in Associations between Dairy and Cognition;424
40.3.1;Cross-Sectional Studies;424
40.3.2;Prospective Studies;424
40.3.3;Summary of These Study Findings;424
40.3.4;Focused Dairy–Cognition Studies;428
40.3.4.1;Cross-Sectional Studies;428
40.3.5;Randomized Controlled Trials;429
40.4;Discussion;429
40.4.1;Limitations of this Literature;429
40.4.2;Assessment of Cognitive Functioning;430
40.4.3;Control of Confounding Variables;430
40.4.3.1;Dietary Assessment;430
40.4.3.2;Mechanisms of Action;430
40.4.4;Epidemiological and Clinical Significance;431
40.5;Summary;432
40.6;Directions for Future Research;432
40.7;References;432
41;34 Obesity and Chronic Low Back Pain: A Kinematic Approach;436
41.1;Introduction;436
41.2;Quantitative Movement Analysis;437
41.2.1;Equipment;437
41.2.2;Obesity and LBP: Our Experience;438
41.2.3;Gait Analysis;438
41.2.4;Trunk Movement;440
41.2.4.1;Quantification of Functional Limitation;440
41.2.4.2;Quantification of the Effects of Osteopathic Manipulative Treatment;443
41.3;Conclusions;444
41.4;References;444
41.5;Further Reading;446
42;35 Fatty Acids and the Hippocampus;448
42.1;Introduction;448
42.2;Fatty Acids and Memory/Hippocampus;448
42.2.1;SFAs, Memory, and the Hippocampus – Evidence from Animal Models;448
42.2.1.1;Neurological Impact of Saturated Fat Consumption;449
42.2.1.1.1;BDNF;449
42.2.1.1.2;Oxidative Stress;449
42.2.1.1.3;Neuroinflammation;450
42.2.2;SFAs, Memory, and the Hippocampus – Human Data;450
42.2.3;Omega-3 Fatty Acids, Memory, and the Hippocampus – Evidence from Animal Studies;451
42.2.4;Can Omega-3 Fatty Acids Remediate Damage to the Hippocampus in Humans?;452
42.2.4.1;Omega-3 Fatty Acids and Depression;452
42.2.4.2;Omega-3 Fatty Acids and their Effect on Memory and Cognition;453
42.2.4.3;Conclusion on Human Data;453
42.2.5;General Conclusion: Fatty Acids and their Impact on the Hippocampus;454
42.3;Fatty Acids and AD;454
42.3.1;SFAs and Risk of AD;454
42.3.2;Putative Causal Basis for Link between SFAs and AD;454
42.3.3;Omega-3 Fatty Acids, Cognitive Decline, and Dementia;455
42.3.3.1;Global Prevalence;455
42.3.3.2;Matched Group Studies;455
42.3.3.3;Longitudinal Studies of Cognitive Decline;456
42.3.3.3.1;Cognitive Decline and Self-Report Measures of Dietary Intake;456
42.3.3.3.2;Dementia Diagnosis and Self-Report Measures of Dietary Intake;456
42.3.3.3.3;Cognitive Decline and Plasma Lipid Estimates;457
42.3.3.3.4;Dementia Diagnosis and Plasma Lipid Estimates;457
42.3.3.4;Prevention and Treatment Studies;457
42.3.3.5;Human Data – Conclusions;458
42.3.4;Omega-3 Fatty Acids, AD, and Memory Impairment – Evidence from Animal Models;458
42.4;General Discussion;459
42.5;References;460
42.6;Further Reading;464
43;36 Fish Oil Supplements, Contaminants, and Excessive Doses;466
43.1;Introduction;466
43.2;Mercury;466
43.3;Lead;468
43.4;Selenium;468
43.5;Arsenic;469
43.6;Cadmium;470
43.7;PCBs;470
43.8;Dichlorodiphenyltrichloroethane;471
43.9;Dieldrin;471
43.10;Conclusion;472
43.11;Acknowledgment;472
43.12;References;472
44;37 Introduction to Fish Oil Oxidation, Oxidation Prevention, and Oxidation Correction;474
44.1;Introduction;474
44.2;Oxidation Process;474
44.3;Oxidation Indicators;474
44.3.1;Prevention of Oxidation and Oxidative Stability;476
44.4;Oxidation Correction;477
44.5;Summary;478
44.6;References;478
44.7;Further Reading;479
45;Index;480


List of Contributors
Serge Alfos,     University of Bordeaux and INRA UMR 1286 Laboratory of Nutrition and Integrative Neurobiology Bordeaux, France Modhi Ali S. Alshammari,     Mel and Enid Zuckerman College of Public Health, University of Arizona, Arizona Belmira Lara da Silveira Andrade da Costa,     Departamento de Fisiologia e Farmacologia, Centro de Cièncias Biológicas, Universidade Federal de Pernambuco, Recife (PE), Brasil Se Min Bang,     Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea Matthew R. Battistini,     Department of Chemistry, University of South Florida, Tampa, Florida Cheryl Tatano Beck,     University of Connecticut School of Nursing, Connecticut Juliana Maria Carrazone Borba,     Departamento de Nutrição, Centro de Cièncias da Saúde, Universidade Federal de Pernambuco, Recife (PE), Brasil J. Thomas Brenna,     Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA Nicole Burca,     University of Arizona Mel and Enid Zuckerman College of Public Health, and School of Medicine, University of Arizona Philip C. Calder,     Human Development & Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom Paolo Capodaglio,     Rehabilitation Unit and Research Laboratory in Biomechanics and Rehabilitation, San Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, Piancavallo (VB), Italy Henriqueta Dias Cardoso,     Departamento de Fisiologia e Farmacologia, Centro de Cièncias Biológicas, Universidade Federal de Pernambuco, Recife (PE), Brasil Nicola Cau,     Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy H.M. Chandola,     Ch. Brahm Prakash Ayurved Charak Sansthan, Khera Dabar, Najafgarh, New Delhi, India Caroline E. Childs,     Human Development & Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom Kyoung Sang Cho,     Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea Veronica Cimolin,     Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy and Rehabilitation Unit and Research Laboratory in Biomechanics and Rehabilitation, San Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, Piancavallo (VB), Italy Catherine F. Clarke,     Department of Chemistry and Biochemistry, UCLA, Los Angeles, California Adriana Coppola,     Internal Medicine, Diabetes, Vascular and Endocrine-metabolic Diseases Unit and the Centre for Applied Clinical Research, Clinical Institute Beato Matteo, Vigevano, Italy, and Department of Internal Medicine, San Donato Milanese, Italy Georgina E. Crichton,     Nutritional Physiology Research Centre, University of South Australia, Adelaide, Australia Lisette C.P.G.M. de Groot,     Wageningen University, Division of Human Nutrition, the Netherlands Daniel R. Dempsey,     Department of Chemistry, University of South Florida, Tampa, Florida Patricia Coelho de Velasco,     Laboratório de Plasticidade Neural, Departamento de Neurobiologia, Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil Ana Francisca Diallo,     University of Connecticut School of Nursing, Connecticut Fabiana Di Sabatino,     Division of Child Neurology, Faculty of Medicine & Psychology, Sapienza University, Rome, Italy Simon C. Dyall,     Department of Life Sciences, University of Roehampton, Whitelands College, London Merrill F. Elias,     Department of Psychology, University of Maine, Orono, Maine, USA and Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA Akhlaq A. Farooqui,     Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio Emma K. Farrell,     Department of Chemistry, University of South Florida, Tampa, Florida Alessandro Ferretti,     Division of Child Neurology, Faculty of Medicine & Psychology, Sapienza University, Rome, Italy Heather M. Francis,     Department of Psychology, Macquarie University, Sydney, Australia Linnea R. Freeman,     Medical University of South Carolina, Charleston, South Carolina Dina Gazizova,     Central and North West London NHS Foundation Trust, London Manuela Galli,     Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy and IRCCS San Raffaele Pisana Tosinvest Sanità, Roma, Italy Carmine Gazzaruso,     Internal Medicine, Diabetes, Vascular and Endocrine-metabolic Diseases Unit and the Centre for Applied Clinical Research, Clinical Institute Beato Matteo, Vigevano, Italy, and Department of Internal Medicine, San Donato Milanese, Italy Grace E. Giles,     Department of Psychology, Tufts University, Medford, MA Catarina Gonçalves-Pimentel,     Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife (PE), Brasil Amanda L. Goodell,     Department of Psychology, University of Maine, Orono, Maine, USA Rubem Carlos Araújo Guedes,     Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife (PE), Brasil Kei Hamazaki,     Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan Tomohito Hamazaki,     Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan Lucas W. Hernandez,     Department of Chemistry, University of South Florida, Tampa, Florida Ted M. Hsu,     Neuroscience Graduate Program, University of Southern California, California Mary C. Hunt,     School of Biological Science, Dublin Institute of Technology, Dublin, Ireland Hidekuni Inadera,     Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan Kristen A. Jeffries,     Department of Chemistry, University of South Florida, Tampa, Florida Michelle Price Judge,     University of Connecticut School of Nursing, Connecticut Robin B. Kanarek,     Department of Psychology, Tufts University, Medford, MA Scott E. Kanoski,     Department of Biological Sciences, University of Southern California, and Neuroscience Graduate Program, University of Southern California Lauren E. Lawson,     Mel and Enid Zuckerman College of Public Health, University of Arizona, Arizona Peter Lembke,     KD Pharma Bexbach GmbH, Bexbach, Germany Caroline R. Mahoney,     Department of Psychology, Tufts University, Medford, MA Amy B....


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.