Buch, Englisch, 215 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 365 g
Reihe: Springer Texts in Education
Buch, Englisch, 215 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 365 g
Reihe: Springer Texts in Education
ISBN: 978-3-030-89197-8
Verlag: Springer International Publishing
The textbook is based on our efforts to identify ways that studying real analysis can provide future teachers with genuine opportunities to think about teaching secondary mathematics. It focuses on how mathematical ideas are connected to the practice of teaching secondary mathematics–and not just the content of secondary mathematics itself. Discussions around pedagogy are premised on the belief that the way mathematicians do mathematics can be useful for how we think about teaching mathematics. The book uses particular situations in teaching to make explicit ways that the content of real analysis might be important for teaching secondary mathematics, and how mathematical practices prevalent in the study of real analysis can be incorporated as practices for teaching.
This textbook will be of particular interest to mathematics instructors–and mathematics teacher educators–thinking about how the mathematics of real analysis might be applicable to secondary teaching, as well as to any prospective (or current) teacher who has wondered about what the purpose of taking such courses could be.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Sozialwissenschaften Psychologie Allgemeine Psychologie Entwicklungspsychologie Pädagogische Psychologie
- Sozialwissenschaften Pädagogik Lehrerausbildung, Unterricht & Didaktik Allgemeine Didaktik Naturwissenschaften, Mathematik (Unterricht & Didaktik)
- Sozialwissenschaften Pädagogik Pädagogik Pädagogische Psychologie
- Sozialwissenschaften Pädagogik Lehrerausbildung, Unterricht & Didaktik Lehrerausbildung
Weitere Infos & Material
Chapter 1: Teaching Principles.- Chapter 2: Equivalent Real Numbers and Infinite Decimals.- Chapter 3: Sequence Convergence and Irrational Decimal Approximations.- Chapter 4: Algebraic Limit Theorem and Error Accumulation.- Chapter 5: Divergence Description and Criteria and Logic in Communication.- Chapter 6: Continuity and Definitions.- Chapter 7: Intermediate Value Theorem and Implicit Assumptions.- Chapter 8: Continuity, Monotonicity, Inverse Functions and Solving Equations.- Chapter 9: Differentiability and the Secant Slope Function.- Chapter 10: Differentiation Rules and Attending to Scope.- Chapter 11: Taylor’s Theorem and Modeling Complex with Simple.- Chapter 12: The Riemann Integral and Area-Preserving Transformations.- Chapter 13: The Fundamental Theorem of Calculus and Conceptual Explanation.