Buch, Englisch, 544 Seiten, Format (B × H): 161 mm x 241 mm, Gewicht: 919 g
Buch, Englisch, 544 Seiten, Format (B × H): 161 mm x 241 mm, Gewicht: 919 g
Reihe: Chapman & Hall/CRC Interdisciplinary Statistics
ISBN: 978-1-4200-8285-2
Verlag: Taylor & Francis Ltd
After a solid refresher on statistical fundamentals, the book focuses on continuous dependent variable models and count and discrete dependent variable models. Along with an entirely new section on other statistical methods, this edition offers a wealth of new material.
New to the Second Edition
A subsection on Tobit and censored regressions
An explicit treatment of frequency domain time series analysis, including Fourier and wavelets analysis methods
New chapter that presents logistic regression commonly used to model binary outcomes
New chapter on ordered probability models
New chapters on random-parameter models and Bayesian statistical modeling
New examples and data sets
Each chapter clearly presents fundamental concepts and principles and includes numerous references for those seeking additional technical details and applications. To reinforce a practical understanding of the modeling techniques, the data sets used in the text are offered on the book’s CRC Press web page. PowerPoint and Word presentations for each chapter are also available for download.
Zielgruppe
Transportation planners and engineers; civil engineers; senior undergraduate and graduate students in engineering, urban planning, economics, and sociology; statisticians working in the transportation field.
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Wirtschaftssektoren & Branchen Transport- und Verkehrswirtschaft
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
Weitere Infos & Material
FUNDAMENTALSStatistical Inference I: Descriptive StatisticsMeasures of Relative Standing Measures of Central Tendency Measures of Variability Skewness and Kurtosis Measures of Association Properties of Estimators Methods of Displaying Data
Statistical Inference II: Interval Estimation, Hypothesis Testing, and Population ComparisonsConfidence IntervalsHypothesis Testing Inferences Regarding a Single PopulationComparing Two PopulationsNonparametric Methods
CONTINUOUS DEPENDENT VARIABLE MODELSLinear RegressionAssumptions of the Linear Regression ModelRegression FundamentalsManipulating Variables in RegressionEstimate a Single Beta Parameter Estimate Beta Parameter for Ranges of a Variable Estimate a Single Beta Parameter for m – 1 of the m Levels of a Variable Checking Regression AssumptionsRegression OutliersRegression Model GOF Measures Multicollinearity in the Regression Regression Model-Building Strategies Estimating Elasticities Censored Dependent Variables—Tobit Model Box–Cox Regression
Violations of Regression Assumptions Zero Mean of the Disturbances Assumption Normality of the Disturbances Assumption Uncorrelatedness of Regressors and Disturbances AssumptionHomoscedasticity of the Disturbances Assumption No Serial Correlation in the Disturbances Assumption Model Specification Errors
Simultaneous-Equation ModelsOverview of the Simultaneous-Equations ProblemReduced Form and the Identification ProblemSimultaneous-Equation Estimation Seemingly Unrelated Equations Applications of Simultaneous Equations to Transportation Data
Panel Data AnalysisIssues in Panel Data AnalysisOne-Way Error Component Models Two-Way Error Component Models Variable-Parameter Models Additional Topics and Extensions
Background and Exploration in Time SeriesExploring a Time SeriesBasic Concepts: Stationarity and DependenceTime Series in Regression
Forecasting in Time Series: Autoregressive Integrated Moving Average (ARIMA) Models and ExtensionsAutoregressive Integrated Moving Average Models The Box–Jenkins ApproachAutoregressive Integrated Moving Average Model ExtensionsMultivariate Models Nonlinear Models
Latent Variable ModelsPrincipal Components Analysis Factor Analysis Structural Equation Modeling
Duration ModelsHazard-Based Duration Models Characteristics of Duration Data Nonparametric Models Semiparametric Models Fully Parametric Models Comparisons of Nonparametric, Semiparametric, and Fully Parametric Models Heterogeneity State Dependence Time-Varying Covariates Discrete-Time Hazard Models Competing Risk Models
COUNT AND DISCRETE DEPENDENT VARIABLE MODELSCount Data ModelsPoisson Regression Model Interpretation of Variables in the Poisson Regression Model Poisson Regression Model Goodness-of-Fit Measures Truncated Poisson Regression Model Negative Binomial Regression Model Zero-Inflated Poisson and Negative Binomial Regression Models Random-Effects Count Models
Logistic RegressionPrinciples of Logistic Regression The Logistic Regression Model
Discrete Outcome ModelsModels of Discrete Data Binary and Multinomial Probit ModelsMultinomial Logit Model Discrete Data and Utility Theory Properties and Estimation of MNL ModelsThe Nested Logit Model (Generalized Extreme Value Models) Special Properties of Logit Models
Ordered Probability ModelsModels for Ordered Discrete Data Ordered Probability Models with Random Effects Limitations of Ordered Probability Models
Discrete/Continuous ModelsOverview of the Discrete/Continuous Modeling Problem Econometric Corrections: Instrumental Variables and Expected Value Method Econometric Corrections: Selectivity-Bias Correction TermDiscrete/Continuous Model Structures Transportation Application of Discrete/Continuous Model Structures
OTHER STATISTICAL METHODSRandom-Parameter ModelsRandom-Parameters Multinomial Logit Model (Mixed Logit Model) Random-Parameter Count Models Random-Parameter Duration Models
Bayesian ModelsBayes’ Theorem MCMC Sampling-Based Estimation Flexibility of Bayesian Statistical Models via MCMC Sampling-Based Estimation Convergence and Identifi ability Issues with MCMC Bayesian Models Goodness-of-Fit, Sensitivity Analysis, and Model Selection Criterion using MCMC Bayesian Models
Appendix A: Statistical FundamentalsAppendix B: Glossary of Terms Appendix C: Statistical Tables Appendix D: Variable Transformations
References
Index