Buch, Englisch, 296 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 760 g
ISBN: 978-3-662-46755-8
Verlag: Springer
This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Overview.- The algebraic Bethe ansatz.- The periodic anisotropic spin-1/2 chains.- The spin-1/2 torus.- The spin-1/2 chain with arbitrary boundary fields.- The one-dimensional Hubbard model.- The nested off-diagonal Bethe ansatz.- The hierarchical off-diagonal Bethe Ansatz.- The Izergin-Korepin model.