E-Book, Englisch, 458 Seiten, Web PDF
Reihe: IFAC Symposia Series
Wang Power Systems & Power Plant Control
1. Auflage 2014
ISBN: 978-1-4832-9822-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the IFAC Symposium, Beijing, China, 12-15 August 1986
E-Book, Englisch, 458 Seiten, Web PDF
Reihe: IFAC Symposia Series
ISBN: 978-1-4832-9822-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
The control of power systems and power plants is a subject of worldwide interest which continues to sustain a high level of research, development and application in many diverse yet complementary areas. Papers pertaining to 13 areas directly related to power systems and representing state-of-the-art methods are included in this volume. The topics covered include linear and nonlinear optimization, static and dynamic state estimation, security analysis, generation control, excitation and voltage control, power plant modelling and control, stability analysis, emergency and restorative controls, large-scale sparse matrix techniques, data communication, microcomputer systems, power system stabilizers, load forecasting, optimum generation scheduling and power system control centers. The compilation of this information in one volume makes it essential reading for a comprehension of the current knowledge in the field of power control.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Power Systems and Power Plant Control;4
3;Copyright Page;5
4;TABLE OF CONTENTS;8
5;IFAC SYMPOSIUM ON POWER SYSTEM AND POWER PLANT CONTROL;6
6;PREFACE;7
7;CHAPTER 1. CONCEPTS, PRACTICE AND TRENDS IN FOSSIL-FIRED POWER PLANT CONTROL;12
7.1;INTRODUCTION;12
7.2;CONTROL OBJECTIVES;12
7.3;CONTROL SYSTEM ORGANIZATION;13
7.4;ADVANCES IN CONTROL CONCEPTS;14
7.5;DESIGN METHODS;17
7.6;CONTROL SYSTEM IMPLEMENTATION;18
7.7;CONCLUDING REMARKS;18
7.8;REFERENCES;19
8;CHAPTER 2. RECENT PROGRESS IN REAL-TIME NETWORK SECURITY ANALYSIS;22
8.1;1. SYSTEM SECURITY;22
8.2;2. ON-LINE POWER FLOW;22
8.3;3. STATE ESTIMATION;24
8.4;4. OBSERVABILITY;23
8.5;5. BAD DATA DETECTION AND IDENTIFICATION;23
8.6;6. EXTERNAL NETWORK MODELING;25
8.7;7. BUS LOAD FORECAST;25
8.8;8. CONTINGENCY SELECTION AND EVALUATION;25
8.9;9. OPTIMAL POWER FLOW;26
8.10;10. FUTURE WORK;26
8.11;REFERENCE;26
9;CHAPTER 3. AN OVERVIEW OF SPARSE MATRIX TECHNIQUES FOR ON-LINE NETWORK APPLICATIONS;30
9.1;INTRODUCTION;30
9.2;POWER SYSTEM NETWORK MATRIX EQUATIONS;30
9.3;NETWORK MATRIX EQUATION SOLUTION APPROACHES;31
9.4;MATRIX TRIANGULATION VARIANTS;31
9.5;SPARSITY BASICS;32
9.6;NODE ORDERING;32
9.7;APPROACHES TO ORDERED FACTORIZATION;32
9.8;STORAGE AND ACCESS FOR THE SPARSE MATRIX FACTORS;33
9.9;PERFORMANCE OF ORDERED FACTORIZATION;33
9.10;NETWORK REDUCTION;34
9.11;SPARSE VECTOR METHODS;34
9.12;CALCULATING PARTS OF THE MATRIX INVERSE;34
9.13;COMPENSATION TECHNIQUES;35
9.14;MATRIX FACTOR UPDATING;35
9.15;PARTIAL REFACTORIZATION;35
9.16;BLOCKED MATRICES;35
9.17;SPECIAL MATRICES;35
9.18;CONCLUSIONS;36
9.19;REFERENCES;36
10;CHAPTER 4. THE FUTURE AUTOMATIC DISPATCHING SYSTEM OF CHINA NATIONAL INTEGRATED POWER SYSTEM;38
10.1;INTRODUCTION;38
10.2;PRESENT STATE OF POWER SYSTEM DEVELOPMENT IN CHINA;38
10.3;THE FORMATION OF NIPS IN TWO STAGES AND THE ROLE OF YGHP IN PROMOTING THE INTERCONNECTION OF RPS's;38
10.4;THE ROLE OF A NATIONAL CONTROL CENTER;40
10.5;THE PROPOSED DESIGN CONCEPT OF FUTURE NCC;43
10.6;SUMMARY;43
10.7;REFERENCES;44
11;CHAPTER 5. TOWARD A FUNCTIONAL CONTROL CENTER DESIGN;46
11.1;INTRODUCTION;46
11.2;THE PROBLEM OF FUNCTIONALITY;46
11.3;TECHNICAL ISSUES;47
11.4;SYSTEM DESIGN AS A CHANGE PROCESS;48
11.5;NEW CONCEPTS IMPROVE FUNCTIONALITY;48
11.6;SUMMARY;48
11.7;REFERENCES;49
11.8;APPENDIX;49
12;CHAPTER 6. NEW DIRECTIONS IN POWER SYSTEM CONTROL FOR OPTIMUM INTEGRATED OPERATION;52
12.1;INTRODUCTION;52
12.2;THE OPERATOR IN FOCUS;53
12.3;AN INTEGRATED LOCAL CONCEPT;56
12.4;DISTRIBUTION AUTOMATION;57
12.5;DEMAND-SIDE MANAGEMENT;58
12.6;AVAILABILITY AND MAINTENANCE;60
12.7;CONCLUSION;60
12.8;REFERENCES;60
13;CHAPTER 7. ON SOME NUMERICAL METHODS FOR OPTIMAL POWER-FLOWS IN ELECTRICAL NETWORKS;62
13.1;INTRODUCTION;62
13.2;NOTATION;62
13.3;OPTIMAL POWER-FLOWS;63
13.4;SOLUTION METHODS;63
13.5;CONCLUSIONS;68
13.6;REFERENCES;68
14;CHAPTER 8. "CRIC", A NEW ACTIVE-REACTIVE DECOUPLING PROCESS IN LOAD FLOWS, OPTIMAL POWER FLOWS AND SYSTEM CONTROL;70
14.1;INTRODUCTION;70
14.2;RECALL OF NEWTON' LOAD FLOWS METHOD FOR;70
14.3;PRINCIPLE OF CRIC APPLICATION TO USUAL LOAD FLOWS;71
14.4;CRIC BASIC FORMULAS;71
14.5;CRIC EXTENDED LOAD FLOW ALGORITHMS;72
14.6;APPLICATION OF CRIC TO OPTIMAL POWER FLOWS;73
14.7;POSSIBLE APPLICATIONS OF CRIC TO VOLTAGE TERTIARY CONTROL;74
14.8;CONCLUSION;75
14.9;REFERENCES;75
15;CHAPTER 9. REACTIVE SECURITY AND OPTIMALITY IN REAL TIME;76
15.1;INTRODUCTION;76
15.2;DEFINING THE SECURITY AND OPTIMALITY PROBLEM;76
15.3;AVAILABLE SOLUTION TECHNIQUES;76
15.4;ENHANCING SECURITY AND OPTIMALITY MODELS;78
15.5;CONCLUSION;81
15.6;REFERENCES;81
16;CHAPTER 10. OPTIMAL CONTROL OF REACTIVE POWER AND VOLTAGE FOR DISTRIBUTION SYSTEMS;82
16.1;INTRODUCTION;82
16.2;MATHEMATICAL FORMULATION;82
16.3;COMPUTER PROGRAM DESCRIPTION;84
16.4;NUMERICAL EXAMPLES;85
16.5;CONCLUSION;86
16.6;REFERENCES;86
16.7;APPENDIX;87
17;CHAPTER 11. OPTIMAL CONTROL OF VOLTAGE AND REACTIVE POWER OF POWER SYSTEM;88
17.1;INTRODUCTION;88
17.2;MATHEMATICAL MODEL;88
17.3;OPTIMIZATION PROCEDURE;89
17.4;THE COMPUTIONAL ASPECTS;90
17.5;NUMERICAL RESULTS AND ANALYSIS;91
17.6;CONCLUSION;92
17.7;REFERENCES;92
18;CHAPTER 12. IMPROVEMENTS OF THE SECONDARY VOLTAGE CONTROL IN FRANCE;94
18.1;INTRODUCTION;94
18.2;PRESENT SITUATION : THE SECONDARY VOLTAGE CONTROL (R.S.T.);94
18.3;THE IMPROVED R.S.T. : THE COORDINATED CONTROL (C.C.);95
18.4;PRACTICAL REALIZATION;97
18.5;RESULTS;97
18.6;CONCLUSION;98
18.7;REFERENCES;98
19;CHAPTER 13. SYSTEM-THEORETICAL ANALYSIS AND DESIGN OF A DECENTRALIZED BUS VOLTAGE CONTROL;100
19.1;INTRODUCTION;100
19.2;1. STATEMENT OP THE PROBLEM;100
19.3;2. MODELING OF THE VOLTAGE CONTROL SYSTEM;101
19.4;3. EXISTENCE CONDITIONS OP THE CONTROL;102
19.5;4. DESIGN OP THE LOCAL BUS VOLTAGE CONTROLLERS;103
19.6;5. CONCLUSION;103
19.7;REFERENCES;103
20;CHAPTER 14. COMBINED CONTROL OF SUBSTATION VOLTAGE AND REACTIVE POWER COMPENSATION BY MICROCOMPUTER;106
20.1;1. INTRODUCTION;106
20.2;2. THE EXISTING SCHEME;106
20.3;3. THE CONTROL RULE;107
20.4;4. HARDWARE STRUCTURE;108
20.5;5. SOFTWARE DESIGN;108
20.6;6. CONCLUSION;109
20.7;ACKNOWLEDGEMENTS;109
20.8;REFERENCES;109
21;CHAPTER 15. A SYNTHESIZED ACCURATE FAULT LOCATOR: THEORY AND FIELD EXPERIENCE;112
21.1;INTRODUCTION;112
21.2;FUNDAMENTAL THEORY;112
21.3;FAULT RESISTANCE ESTIMATION;113
21.4;IMPLEMENTATION TOOL;114
21.5;OTHER FUNCTIONS;114
21.6;HARDWARE;115
21.7;SOFIWARE;115
21.8;DESIGN TEST;115
21.9;COMMISSIONING TEST;115
21.10;FIELD RESULTS;115
21.11;CONCLUSION;116
21.12;REFERENCES;116
22;CHAPTER 16. DIRECT POWER SYSTEM STABILISER DESIGN FOR OPTIMAL PERFORMANCE OF MULTIMACHINE SYSTEMS;118
22.1;INTRODUCTION;118
22.2;SYSTEM EQUATIONS FOR STABILISERS DESIGN;118
22.3;A SECOND-ORDER MECHANICAL-MODE DYNAMIC-EQUIVALENT OF MACHINES;119
22.4;EFFECT OF GOVERNOR DYNAMICS;119
22.5;THE STABILISERS DESIGN;119
22.6;NUMERICAL EXAMPLES AND RESULTS;119
22.7;CONCLUSION;123
22.8;REFERENCES;123
23;CHAPTER 17. INTEGRATED CONTROL OF GENERATOR STABILITY BY MICROCOMPUTER;124
23.1;INTRODUCTION;124
23.2;CONCEPT OF ADVANCED STABILIZER;124
23.3;CONTROL PRINCIPLE;125
23.4;EXPERIMENTAL RESULTS AND DISCUSSION;126
23.5;CONCLUSIONS;127
23.6;REFERENCES;127
24;CHAPTER 18. AN ADAPTIVE POWER SYSTEM STABILIZER;130
24.1;INTRODUCTION;130
24.2;ADAPTIVE CONTROLLER STRUCTURE;130
24.3;SIMULATION STUDIES;132
24.4;IMPLEMENTATION;132
24.5;EXPERIMENTAL RESULTS;132
24.6;CONCLUSIONS;133
24.7;REFERENCES;133
25;CHAPTER 19. EXPERIMENTAL STUDIES ON ADAPTIVE MICROPROCESSOR STABILIZERS FOR SYNCHRONOUS GENERATORS;136
25.1;INTRODUCTION;136
25.2;PHYSICAL TEST FACILITY;136
25.3;TEST CONFIGURATION;136
25.4;REGULATOR ALGORITHMS;137
25.5;TEST RESULTS;138
25.6;CONCLUSIONS;138
25.7;ACKNOWLEDGEMENTS;139
25.8;REFERENCES;139
26;CHAPTER 20. THE FIELD TESTS ON POWER SYSTEM STABILIZERS FOR DAMPING LOW FREQUENCY OSCILLATION;142
26.1;INTRODUCTION;142
26.2;THE CONDITIONS CAUSING LOW FREQUENCY OSCILLATION;142
26.3;LOW FREQUENCY OSCILLATION PHENOMENA IN CHINESE POWER SYSTEMS;143
26.4;POWER SYSTEM STABILIZER AND ITS PERFORMANCE;144
26.5;FIELD EFFECT ON POWER SYSTEM STABILIZER;145
26.6;ANALYSIS ON THE TEST RESULTS;146
26.7;CONCLUSION;148
26.8;REFERENCES;148
27;CHAPTER 21. DECENTRALIZATION VS. CENTRALIZATION IN GRID AUTOMATION SYSTEMS;150
27.1;1. INTRODUCTION;150
27.2;2. LIMITS III DISTRIBUTING INTELLIGENCE;150
27.3;3. ORGANIZATIONAL CRITERIA;151
27.4;4. STRUCTURE OF THE POWER SYSTEM AND OF IT'S OPERATIONAL ORGANIZATION;152
27.5;5. CONTROL CENTRES;152
27.6;6. SUBSTATIONS;153
27.7;7. DATA-TRANSMISSION;153
27.8;8. CONCLUSION;153
27.9;LITERATURE;154
28;CHAPTER 22. A NETWORK OF INTELLIGENCE TO SUPERVISE AND CONTROL THE ELECTRICAL NETWORK;156
28.1;1. CONTROL ORGANIZATION OF AN ELECTRICAL NETWORK;156
28.2;2. NODE OF INTELLIGENCE CONCEPT;157
28.3;3. SOFTWARE COMPONENT CONCEPT;158
28.4;4. HARDWARE ARCHITECTURE INSIDE A NODE;160
28.5;5. CONCLUSIONS;160
28.6;REFERENCES;161
29;CHAPTER 23. USER-ORIENTED POWER SYSTEM CONTROL;162
29.1;OPERATION OF POWER SYSTEMS;162
29.2;INFORMATION FLOWS IN POWER CONTROL;163
29.3;POSSIBLE ASSISTANCE OF THE OPERATOR BY THE CONTROL SYSTEM;163
29.4;PROPOSED FUNCTIONALITY OF A CONTROL SYSTEM;165
29.5;POSSIBILITIES FOR DATA REDUCTION IN POWER SYSTEM CONTROL;165
29.6;REMEDIAL ACTIONS DURING AN EMERGENCY;166
29.7;CONCLUSION;166
29.8;REFERENCES;167
30;CHAPTER 24. A NEW DISPATCH CONTROL SYSTEM FOR POWER GRID;168
30.1;INTRODUCTION;168
30.2;SYSTEM CONFIGURATION;168
30.3;FUNCTIONS;170
30.4;FUNCTION EXPANSION;172
30.5;CONCULSION;172
31;CHAPTER 25. AN INTEGRATED, HIERARCHICAL FORECASTING, SCHEDULING, MONITORING AND DISPATCHING SYSTEM FOR A LARGE HYDRO-THERMAL POWER SYSTEM;174
31.1;INTRODUCTION;174
31.2;OPERATING STRATEGY;174
31.3;APPLICATION SYSTEM TO SATISFY NEEDS OF NEAR TERM OPERATION;176
31.4;OUR EXPERIENCES;179
31.5;DEVELOPMENTAL STATUS AND FUTURE PLANS;179
31.6;CONCLUSION;179
31.7;ACKNOWLEDGEMENT;179
32;CHAPTER 26. INTEGRATION OF HYDRO POWER CONTROL IN POWER CONTROL CENTRES;180
32.1;INTRODUCTION;180
32.2;CALCULATION OF WATER FLOW;180
32.3;CONTROL;181
32.4;SUPERVISION;183
32.5;CALCULATION OF SPINNING RESERVE;183
32.6;HYDROLOGICAL CALCULATIONS;184
32.7;REFERENCES;184
33;CHAPTER 27. GENERAL REQUIREMENTS AND POSSIBLE SOLUTIONS FOR A NEW COMMUNICATION SYSTEM WITHIN THE NORWEGIAN POWER SYSTEM;186
33.1;INTRODUCTION;186
33.2;SYSTEM CONTROL STRUCTURE;186
33.3;METHOD OF ESTABLISHING REQUIREMENTS;187
33.4;GENERAL, REQUIREMENTS;187
33.5;ALTERNATIVE METHODS OF SOLUTION;188
33.6;PROPOSED COMMUNICATION SYSTEM;188
33.7;CONCLUSIONS;190
33.8;REFERENCES;190
34;CHAPTER 28. THE REAL TIME DATA TRANSMISSION NETWORK FOR THE CONTROL OF THE FRENCH POWER SYSTEM;192
34.1;INTRODUCTION;192
34.2;THE REAL-TIME CONTROL SYSTEM AND THE ASSOCIATED DATA TRANSMISSION NETWORK;193
34.3;FUTURE PROJECTS;195
34.4;CONCLUSION;195
34.5;REFERENCES;196
35;CHAPTER 29. EMERGENCY OPERATION OF ELECTRICAL POWER PLANTS: EFFECTS OF THERMAL UNIT CONTROLS ON FREQUENCY TRANSIENTS;198
35.1;INTRODUCTION;198
35.2;BOILER TURBINE CONTROLS;199
35.3;SAMPLE SYSTEM AND SCENARIO;200
35.4;SIMULATION RESULTS;201
35.5;CONCLUSIONS;203
35.6;ACKNOWLEDGEMENTS;203
35.7;REFERENCES;203
36;CHAPTER 30. A NEW ALGORITHM FOR AUTOMATIC GENERATION CONTROL OF HYDROPOWER PLANTS;204
36.1;TASK OF AUTOMATIC GENERATION CONTROL FOR HYDROPOWER PLANTS;204
36.2;BASIC CONTROL CONCERPT OF AGC;204
36.3;CHOICE OF OPTIMAL NUMBER OF OPERATING GENERATORS;205
36.4;DETERMINATION OF WHICH UNITS DUE TO OPERATE;205
36.5;ECONOMIC LOAD DISPATCHING AMONG OPERATING GENERATORS;205
36.6;GENERAL FLOW CHART OF AGC PROGRAM FOR HYDROPOWER PLANTS;205
36.7;REALIZATION OF THE NEW ALGORITHM IN HYDROPOWER PLANTS;206
36.8;CONLUSION;207
36.9;REFERENCES;207
37;CHAPTER 31. IMPROVED RIVER FLOW REGULATION BY THE USE OF AN ADAPTIVE PREDICTION MODEL;210
37.1;INTRODUCTION;210
37.2;PROBLEM OUTLINE AND MODEL DESCRIPTION;210
37.3;CONTROL STRATEGY;211
37.4;RESULTS;212
37.5;CONCLUSIONS;213
37.6;ACKNOWLEDGEMENT;214
37.7;REFERENCES;214
37.8;APPENDIX;214
38;CHAPTER 32. LOAD-FREQUENCY CONTROL WITH SHORTTERM LOAD PREDICTION;216
38.1;INTRODUCTION;216
38.2;THE ON-LINE VERY SHORT TERM LOAD PREDICATION;216
38.3;THE LEAD AHEAD LOAD PREQUENCY CONTROL;217
38.4;SIMULATION STUDIES;217
38.5;CONCLUSION;219
38.6;REFFERENCES;219
39;CHAPTER 33. A NOVEL ALGORITHM FOR STATIC SECURITY ANALYSIS;220
39.1;INTRODUCTION;220
39.2;CHOICE AND STRUCTURE OF PERFORMANCE INDEX;222
39.3;STATIC SECURITY ANALYSIS;223
39.4;NUMERICAL EXAMPLES;224
39.5;CONCLUSIONS;224
39.6;REFERENCES;225
40;CHAPTER 34. INTEGRATED SECURITY ANALYSIS AND REMEDIAL ACTION PACKAGE;226
40.1;INTRODUCTION;226
40.2;CONTINGENCY ANALYSIS PROGRAM;226
40.3;FAST REMEDIAL ACTION PROGRAM;228
40.4;REMARKS;228
40.5;TIMINGS/RESULTS;229
40.6;CONCLUSIONS;230
40.7;REFERENCES;230
41;CHAPTER 35. A FAST LOOP-BASED ALGORITHM FOR AUTOMATIC CONTINGENCY SELECTION;232
41.1;INTRODUCTION;232
41.2;LOOP METHOD AND SERIES POTENTIAL COMPENSATION THEORY FOR SIMULATION OF LINE OUTAGE;232
41.3;THE LOOP-BASED ACS ALGORITHM;233
41.4;RESULTS OF CALCULATIONS;235
41.5;CONCLUSION;235
41.6;REFERENCES;236
41.7;APPENDIX I: LIST OF PRINCIPAL SYMBOLS;236
41.8;APPENDIX II: ALGORITHM FORMULAS OF MULTIPLE OUTAGES;236
42;CHAPTER 36. A FAST AUTOMATIC CONTINGENCY SELECTION ALGORITHM WITH BUS VOLTAGE CRITERIA;238
42.1;INTRODUCTION;238
42.2;THE NEW METHOD;238
42.3;DISCUSSION OF RESULTS;239
42.4;CONCLUSION;239
42.5;REFERENCES;239
42.6;APPENDIX;240
43;CHAPTER 37. A FAST TRANSIENT STABILITY ASSESSMENT APPROACH BY COMBINED SYSTEM DECOMPOSITION-AGGREGATION AND TRANSIENT ENERGY METHOD;244
43.1;INTRODUCTION;244
43.2;MATHEMATICAL FOhnULATION;244
43.3;SIMULATION TEST RESULTS;246
43.4;CONCLUSIONS;248
43.5;REFERENCES;248
44;CHAPTER 38. POWER SYSTEM TRANSIENT STABILITY STUDIES BY LYAPUNOV METHOD USING COHERENCY BASED AGGREGATION;250
44.1;INTRODUCTION;250
44.2;ASSUMPTION;250
44.3;CONSERVATIVITY OF THE REDUCED MODEL;250
44.4;COHERENCY AND CRITERIAL UNSTABLE EQUILIBRIUM POINT;251
44.5;EQUILIBRIUM POINTS OF THE REDUCED MODEL;251
44.6;ENERGY OF THE REDUCED MODEL;251
44.7;SIMPLIFICATIONS;252
44.8;EXAMPLE;252
44.9;CONCLUSIONS;253
44.10;REFERENCES;253
45;CHAPTER 39. MODIFIED ALGORITHM FOR COHERENCY RECOGNITION IN LARGE ELECTRICAL POWER SYSTEMS;256
45.1;ASSUMPTIONS;256
45.2;E-COHERENCY AS A CONSTRAINED MOTION;256
45.3;CONDITIONS OF E-COHERENCY;256
45.4;N-COHERENCY CRITERIA;257
45.5;SIMPLIFICATIONS OF THE SYSTEM PARAMETERS CRITERION;257
45.6;CRITERIAL VALUES;257
45.7;PROPOSED ALGORITHM;258
45.8;EXAMPLES;258
45.9;CONCLUSIONS;259
45.10;REFERENCES;260
46;CHAPTER 40. DIRECT CRITERIA FOR STRUCTURE PRESERVING MODELS OF ELECTRIC POWER SYSTEMS;262
46.1;1. INTRODUCTION;262
46.2;2. STRUCTURE PRESERVING MODELS AND LIAPUNOV FUNCTIONS;262
46.3;3. PRACTICAL STABILITY DOMAIN ESTIMATES (PSDE);264
46.4;4. IMPLEMENTATION CONSIDERATIONS;265
46.5;5. DIRECT CRITERIA APPLIED TO TRANSIENT STABILITY ANALYSIS;266
46.6;6. CONCLUSION;267
46.7;7. REFERENCES;267
47;CHAPTER 41. ON-LINE SECURITY MONITORING BY DETECTING OF SPECIFIED MODES THROUGH POWER FLOW OBSERVATION;268
47.1;1. INTRODUCTION;268
47.2;2. GROUPING OF GENERATORS BASED ON THE SPECIFIED MODE -CHOW'S APPROACH;269
47.3;3. LINE SELECTING ALGORITHM FOR THE MONITORING OF A SPECIFIED MODE;269
47.4;4. IMPLEMENTATION;270
47.5;5. APPLICATION OF FFT TO THE SECURITY MONITORING THROUGH THE POWER FLOW OBSERVATION;272
47.6;6. CONCLUSIONS;273
47.7;REFERENCES;273
48;CHAPTER 42. APPLICATION OF DECENTRALIZED CONTROL OF POWER SYSTEM BY USING COHERENCY BASED AGGREGATION;274
48.1;1. INTRODUCTION;274
48.2;2. MODEL REDUCTION BY USING COHERENCY BASED AGGREGATION;274
48.3;3.DYNAMIC EQUIVALENCY;275
48.4;4.DECENTRALIZED CONTROL;276
48.5;5. CONCLUSION;278
48.6;REFERENCES;278
49;CHAPTER 43. NEW RESULTS FOR STABILITY MONITORING OF THE LARGE ELECTRIC POWER SYSTEM THE PHASE PORTRAIT OF THE POWER SYSTEM;280
49.1;1. INTRODUCTION - SUMMARY OF THE FOUR SEGEMENTS OF STABILITY MONITORING;280
49.2;2. MODELS AND NOTATIONS;280
49.3;3. SUMMARY OF PROPERTIES OF THE PHASE PORTRAIT OF THE POWER SYSTEM;281
49.4;4. THEOREMS, PROOFS AND COROLLORIES DEFINING THE PROPERTIES OF THE PHASE PORTRAIT OF THE POWER SYSTEM;283
49.5;5. CONCLUSION;286
49.6;REFERENCES;286
50;CHAPTER 44. A SOFTWARE PACKAGE FOR SECURITY ASSESSMENT FUNCTIONS;288
50.1;INTRODUCTION;288
50.2;STRUCTURE OF THE PROGRAM PACKAGE;288
50.3;NETWORK CONFIGURATOR;290
50.4;STATE ESTIMATION;291
50.5;BUS LOAD ALLOCATION;292
50.6;ON-LINE LOAD FLOW CALCULATION;293
50.7;CONTINGENCY ANALYSIS;293
50.8;ON-LINE SHORT-CIRCUIT CALCULATION;293
50.9;PENALTY FACTOR CALCULATION;294
50.10;OPTIMAL POWER FLOW;294
50.11;CONCLUSION;295
50.12;REFERENCES;295
51;CHAPTER 45. AN ANALYTIC APPROACH TO UNIT COMMITMENT;296
51.1;INTRODUCTION;296
51.2;LIST OF SYMBOLS;296
51.3;PROBLEM FORMULATION;297
51.4;SOLUTION OF THE STATIC UC PROBLEM;297
51.5;SWITCHING CURVES;298
51.6;REGIONS OF CONSTANT UNIT COMMITMENT;299
51.7;PHYSICAL INTERPRETATION OF THE SWITCHING MECHANISM;299
51.8;ANALYTIC PROPERTIES OF THE OPTIMUM UNIT COMMITMENT IN TERMS OF LOAD AND RESERVE MARGIN;299
51.9;CONCLUSIONS;301
51.10;REFERENCES;301
51.11;APPENDIX A: GENERATOR COST DATA;301
52;CHAPTER 46. COMPARISON OF DECOMPOSITION AND COORDINATION METHODS IN HYDROTHERMAL OPTIMAL SCHEDULING;302
52.1;INTRODUCTION;302
52.2;FORMATION OF PROBLEM;302
52.3;MASTER . COORDINATOR;303
52.4;MASTER V COORDINATOR;304
52.5;RESULTS AND CONCLUSIONS;305
52.6;REFERENCES;305
52.7;APPENDIX;305
53;CHAPTER 47. SHORT-TERM OPERATION OF HYDROTHERMAL SYSTEMS;306
53.1;INTRODUCTION;306
53.2;PROBLEM MODELLING;306
53.3;PROBLEM STRUCTURE;308
53.4;EXISTING SOLUTION APPROACHES;309
53.5;PROPOSED APPROACH;309
53.6;DANTZIG-WOLFE DECOMPOSITION ALGORITHM;309
53.7;CASE STUDY;310
53.8;CONCLUSIONS;310
53.9;REFERENCES;310
54;CHAPTER 48. SYSTEM OPTIMIZATION — A CENTRAL FUNCTION OF OPERATION PLANNING;312
54.1;1. FUNCTIONS OF SYSTEM PLANNING;312
54.2;2. OPERATION PLANNING OF THE GENERATING SYSTEM;313
54.3;3. COMPUTATIONAL COUPLING OF THE GENERATING SYSTEM AND NETWORK FOR SHORT-TERM OPTIMIZATION;314
54.4;4. SUMMARY;317
54.5;REFERENCES;317
55;CHAPTER 49. DISPATCH AND CONTROL IN THE OPERATION OF A LARGE HYDROELECTRIC POWER SUPPLY SYSTEM;320
55.1;INTRODUCTION;320
55.2;OVERVIEW OF SCHEDULING ACTIVITY;320
55.3;METHODS AND TOOLS FOR ON-LINE RESCHEDULING OF POWER PRODUCTION.;322
55.4;EXAMPLE STUDIES;323
55.5;CONCLUDING REMARKS;325
55.6;REFERENCES;325
56;CHAPTER 50. SHORT TERM LOAD FORECASTING BASED ON WEATHER LOAD MODELS;326
56.1;INTRODUCTION;326
56.2;WEATHER LOAD MODELS;326
56.3;TEST RESULTS;329
56.4;ERROR ANALYSIS;330
56.5;CONCLUSIONS;331
56.6;REFERENCES;331
57;CHAPTER 51. A PRACTICAL MODEL OF ADAPTIVE FORECASTING DAILY ELECTRICAL LOAD AND LOAD ANALYSIS;332
57.1;INTRODUCTION;332
57.2;CHARACTERISTICS OF THE POWER LOAD;332
57.3;ELEMENTARY THEORY;333
57.4;ACTUAL RESULTS;335
57.5;CONCLUSION;335
57.6;REFERENCE;336
58;CHAPTER 52. A METHOD FOR SOLVING THE PROBLEM OF OPTIMAL SWITCHING;338
58.1;1. WHY MODEL THE SWITCHING OF A POWER SYSTEM ?;338
58.2;2. FORMULATING THE PROBLEM;338
58.3;3. RESOLUTION METHODS a) The penalties;339
58.4;4. A SPECIFIC OPTIMIZATION CODE;340
58.5;5. PERSPECTIVES;340
58.6;REFERENCES;341
59;CHAPTER 53. RESTORATION OF THE LARGE ELECTRIC POWER SYSTEM USING A COMPUTER GENERATED SEQUENCE OF TARGET SYSTEMS;342
59.1;1. INTRODUCTION;342
59.2;2. QUANTIFYING THE RESTORATION PROCESS;343
59.3;3. DYNAMICS OF THE PROBLEM;344
59.4;4. A GRADED PRECISION MODEL FOR THE TRANSMISSION SYSTEM;344
59.5;5. DEFINITION OF THE TARGET SYSTEM;346
59.6;6. A FEASIBLE COMPUTATION ALGORITHM TO FIND THE TARGET SYSTEM AT t . n+1;347
59.7;7. EXPERIMENTAL RESULTS;347
59.8;8. CONCLUSION:;347
59.9;REFERENCES;347
60;CHAPTER 54. FULL SCALE TRAINING SIMULATOR FOR A LARGE COAL-FIRED ONCE-THROUGH TYPE BOILER AND POWER STATION;348
60.1;Introduction;348
60.2;Plant Description;348
60.3;Simulator;349
60.4;Dynamic Model;349
60.5;Evaporator;349
60.6;Boiler Furnace;352
60.7;Operational Result;352
60.8;AcknowIedgement;352
61;CHAPTER 55. A LARGE-SCALE MATHMODEL FOR 200 MW THERMAL POWER UNIT;354
61.1;INTRODUCTION;354
61.2;A LARGE-SCALE SYSTEM MODEL;354
61.3;DECOMPOSITION OF THE MODEL;355
61.4;CONSERVATION MODELS;355
61.5;FUNCTION AND CONTROLLER MODELS;355
61.6;EVENT AND LOGIC MODELS;356
61.7;THE NODAL MODELS;356
61.8;SYNTHESIS OF THE MODELS;356
61.9;CONCLUDING REMARKS;357
61.10;REFERENCES;357
62;CHAPTER 56. MODELLING AND SIMULATION OF A PILOT POWER PLANT FIRED WITH OIL AND COALWATER FUEL;360
62.1;INTRODUCTION;360
62.2;PLANT FEATURES;360
62.3;PURPOSE OF EXPERIMENTATION;360
62.4;PLAHT CCMTTROL AND AUTOMATION;361
62.5;BOILER MODELING;361
62.6;SIMULATION RESULTS;363
62.7;REFERENCES;364
63;CHAPTER 57. DESIGN AND APPLICATION OF MULTIVARIABLE CONTROL SYSTEMS IN POWER PLANTS ;366
63.1;DIAGONAL DOMINANCE OF UNILATERALLY DECOUPLED SYSTEMS;366
63.2;THREE BASIC UNILATERAL DECOUPLING METHODS;367
63.3;APPLICATION IN POWER PLANTS;368
63.4;IMPROVING THE AVAILABILITY OF CONTROL SYSTEMS;369
63.5;CONCLUSION;370
63.6;REFERENCES;370
64;CHAPTER 58. MODERN CONTROL THEORY APPLIED TO 200 MW BOILER-TURBINE UNIT CONTROL;372
64.1;INTRODUCTION;372
64.2;MATHEMATICAL MODEL;373
64.3;PERFORMANCE INDEXES;373
64.4;SMITH-PID CONTROL;373
64.5;STOCHASTIC OPTIMAL CONTROL;374
64.6;OPTIMAL CONTROL USING EXTENDED OBSERVOR;375
64.7;APPLICATION OF LINEAR PROGRAMMING;376
64.8;CONCLUSION;376
64.9;APPENDIX;377
64.10;REFFRENCES;377
65;CHAPTER 59. IMPLEMENTATION OF OPTIMAL CONTROL AT A SUPERCRITICAL VARIABLE-PRESSURE THERMAL POWER PLANT;378
65.1;INTRODUCTION;378
65.2;SPECIAL FEATURES OF VARIABLE PRESSURE BOILER CONTROL;378
65.3;OPTIMAL CONTROL SYSTEM;379
65.4;SYSTEM IDENTIFICATION AND OPTIMAL CONTROLLER DESIGN;379
65.5;PRELIMINARY STUDY ON A SIMULATION MODEL;379
65.6;APPLICATION TO A 500MW PLANT;382
65.7;CONCLUSION;383
65.8;REFERENCES;383
66;CHAPTER 60. AN ALGORITHM FOR OPTIMAL METERING IN STATE ESTIMATION VIA SEQUENTIAL ELIMINATION;384
66.1;INTRODUCTION;384
66.2;THE TOTAL VARIANCE OF ESTIMATION;384
66.3;THE SENSITIVITY FACTOR OF MEASUREMENT;385
66.4;THE PRIORITY ORDERED TABLE;386
66.5;ALGORITHM AND COMPUTATIONAL COMPARISON;386
66.6;CONCLUSION;387
66.7;REFERENCES;387
67;CHAPTER 61. OPTIMAL METER PLACEMENT FOR STATE ESTIMATION;390
67.1;INTRODUCTION;390
67.2;THEORETICAL APPROACH;391
67.3;MEASUREMENT SELECTION ALGORITHM;392
67.4;SAMPLE STUDIES;394
67.5;CONCLUSION;395
67.6;REFERENCES;396
68;CHAPTER 62. DESIGN AND IMPLEMENTATION OF AN ADVANCED STATE ESTIMATION SOFTWARE;398
68.1;1. INTRODUCTION;398
68.2;2. NOTATION;398
68.3;3. THE OBSERVABILITY ANALYSIS FUNCTION;399
68.4;4. THE BAD DATA ANALYSIS FUNCTION;399
68.5;5. IMPLEMENTATION;402
68.6;6. CONCLUSIONS;402
68.7;7. REFERENCES;403
68.8;APPENDIX. ALGORITHMS OF HTI METHOD;403
69;CHAPTER 63. DECISION THEORY APPROACH TO BAD DATA REMOVAL FOR POWER SYSTEM STATE ESTIMATION;404
69.1;INTRODUCTION;404
69.2;THE DOUBTFUL BAD DATA SET;404
69.3;DECISION THEORY FRAMEWORK FOR BAD DATA IDENTIFICATION [7];404
69.4;DETERMINE THE PROBABILITY Pj FOR STATE OF THE WORLD;406
69.5;PENALTY MATRIX;407
69.6;TEST RESULTS;408
69.7;CONCLUSIONS;408
69.8;REFERENCES;409
69.9;ACKNOWLEDGEMENT;409
70;CHAPTER 64. COMPOSITE HYDROELECTRIC ENERGY SYSTEM STATE ESTIMATION;410
70.1;INTRODUCTION;410
70.2;ELECTRICAL POWER SYSTEM TRACKING STATE ESTIMATOR;410
70.3;USE OF A KALMAN FILTER TO ESTIMATE HYDRO-CANAL FLOW;410
70.4;HYDRO CANAL DYNAMICS AND KALMAN FILTER DERIVATION;411
70.5;USE OF A KALMAN FILTER TO ESTIMATE THE STATE OF A HYDRO-TURBINE/GENERATOR;413
70.6;CONCLUSION;414
70.7;ACKNOWLEDGEMENTS;414
70.8;REFERENCES;414
71;CHAPTER 65. A NEW HIERARCHICAL APPROACH FOR DYNAMIC STATE PREDICTION AND FILTERING IN ELECTRIC POWER SYSTEMS;416
71.1;1. INTRODUCTION;416
71.2;2. FUNDAMENTALS OF DYNAMIC STATE ESTIMATION IN ELECTRIC POWER SYSTEMS;416
71.3;3. THE DYNAMIC LOAD PREDICTION (DLP) METHOD;417
71.4;4. THE NEW HIERARCHICAL DSE METHOD;418
71.5;5. IMPLEMENTATION CONSIDERATIONS;419
71.6;6. SIMULATION RESULTS;419
71.7;7. CONCLUSION;421
71.8;8. REFERENCES;421
72;CHAPTER 66. EVALUATION OF TECHNIQUES WHICH AVOID INFORMATION MATRIX RECALCULATION IN FAST DECOUPLED STATE ESTIMATION;422
72.1;INTRODUCTION;422
72.2;REVIEW OF FAST DECOUPLED STATE ESTIMATION;422
72.3;MODIFICATIONS TO HALVE THE STORAGE REQUIREMENTS OF THE FAST DECOUPLED STATE ESTIMATOR;423
72.4;METHODS WHICH AVOID RECALCULATION OF THE INFORMATION MATRIX;423
72.5;CONCLUSION;424
72.6;ACKNOWLEDGEMENTS;425
72.7;REFERENCES;425
73;CHAPTER 67. OBSERVABLE ISLAND IDENTIFICATION FOR STATE ESTIMATION USING INCIDENCE MATRIX;428
73.1;I. INTRODUCTION;428
73.2;II. TOPOLOGICAL OBSERVABILITY ANALYSIS BY INCIDENCE MATRIX;429
73.3;III. OBSERVABLE ISLAND IDENTIFICATION;430
73.4;IV. METER PLACEMENT;432
73.5;V. NUMERICAL TEST;432
73.6;VI. CONCLUSION;433
73.7;REFERENCES;433
74;CHAPTER 68. EXPERIMENTAL RESULTS FOR A DIGITAL PID VOLTAGE REGULATOR WITH DYNAMICALLY CHANGING WEIGHTING COEFFICIENTS;434
74.1;INTRODUCTION;434
74.2;THE PHYSICAL MODEL;434
74.3;THE PID DIGITAL CONTROLLER;434
74.4;REAL-TIME TESTING;435
74.5;TEST RESULTS;436
74.6;CONCLUSIONS;437
74.7;REFERENCES;437
74.8;APPENDIX I: DYNAMIC VARIATION OF THE RELATIVE WEIGHTS;438
74.9;APPENDIX II: PID CONTROLLER ALGORITHM;438
74.10;APPENDIX III: SYNCHRONOUS MACHINE PARAMETERS;438
75;CHAPTER 69. A MICROPROCESSOR-BASED EXCITATION REGULATOR: ITS DESIGN PRINCIPLE AND TEST RESULTS;440
75.1;INTRODUCTION;440
75.2;SAMPLE RATE;442
75.3;APPLICATION SOFTWARE;442
75.4;RESOLUTION;444
75.5;PREVENTION FROM ELECTRIC NOISE OR INTERFERENCE;444
75.6;TEST RESULTS;444
75.7;CONCLUSIONS;445
76;CHAPTER 70. THEORY AND PRACTICE OF THE OPTIMAL CONTROLLERS;446
76.1;INTRODUCTION;446
76.2;BRIEF DESCRIPTION;446
76.3;ANALYSIS;446
76.4;TEST ON MICRO-ALTERNATOR SYSTEM AND ACTUAL POWER SYSTEM;448
76.5;COMPARISON BETWEEN POWER SYSTEM STABILIZER AND OEC;448
76.6;CONCLUSIONS;449
76.7;REFERENCES;449
76.8;APPENDIX A;449
77;CHAOTER 71. OPTIMIZATION DESIGN OF MULTIVARIABLE CONTROL IN MULTIMACHINE POWER SYSTEMS;452
77.1;INTRODUCTION;452
77.2;PERFORMANCE INDEX AND OPTIMIZATION ALGORITHM;453
77.3;MATHEMATICAL MODEL OF MULTIMACHINE POWER SYSTEM;454
77.4;EXAMPLE OF DESIGNING OEC AND DLEC IN MULTIMACHINE POWER SYSTEM;454
77.5;REFERENCES;456
77.6;APPENDIX;457
78;AUTHOR INDEX;458
79;SUBJECT INDEX;460