Wang / Anpo / Fu | UV-Visible Photocatalysis for Clean Energy Production and Pollution Remediation | E-Book | sack.de
E-Book

E-Book, Englisch, 384 Seiten, E-Book

Wang / Anpo / Fu UV-Visible Photocatalysis for Clean Energy Production and Pollution Remediation

Materials, Reaction Mechanisms, and Applications

E-Book, Englisch, 384 Seiten, E-Book

ISBN: 978-3-527-83797-7
Verlag: Wiley-VCH
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Provides the current developments in photocatalytic reactions on both inorganic and organic-based materials which operate under UV-visible light or sunlight irradiation, with focuses on the fundamentals and applications in clean energy production and pollution remediation.
Wang / Anpo / Fu UV-Visible Photocatalysis for Clean Energy Production and Pollution Remediation jetzt bestellen!

Weitere Infos & Material


Foreword

Introduction

PART I. Fundamentals of Photocatalysis

 

Visible-Light Active Photocatalysts in Pollutant Degradation/Conversion with Simultaneous Hydrogen Production

Selective Oxidation of Alcohols using Carbon Nitride Photocatalysts

Application of S-Scheme Heterojunction Photocatalyst

The Role of the Defects on the Photocatalytic Reactions on ZnO

 

PART II. Photocatalytic Splitting of Water to Produce Hydrogen

 

Strategies for Promoting Overall Water Splitting with Particulate Photocatalysts via Single-Step Visible-Light Photoexcitation

Integration of Redox Cocatalysts for Photocatalytic Hydrogen Evolution

Polymeric Carbon Nitride-Based Materials in Aqueous Suspensions for Water Photo-Splitting and Photo-Reforming of Biomass Aqueous Solutions to Generate H2

Organic Supramolecular Materials for Photocatalytic Splitting of Water to Produce Hydrogen

Visible Light-Responsive TiO2 Thin Film Photocatalysts for the Separate Evolution of H2 and O2 from Water

Development of Highly Efficient CdS-Based Photocatalysts for Hydrogen Production: Structural Modification, Durability, and Mechanism

Theoretical Studies on Photocatalytic H2 Production from H2O

 

PART III. Photocatalytic Reduction of CO2 and Fixation of N2

 

Progress in Development of Cocatalysts for the Photocatalytic Conversion of CO2 using H2O as an Electron Donor

Preparation, Characterization, and Photocatalysts? Application of Silicas/Silicates with Nanospaces Containing Single-Site Ti-Oxo Species

Surface Coordination Improved Photocatalytic Fixation of CO2 over 2D Oxide Nanosheets

Recent Progress on Layered Double Hydroxides-Based Nanomaterials for Solar Energy Conversion

The Significance and Current Status of Photocatalytic N2 Fixation Study

Photocatalytic N2 Fixation: A Step Closer to the Solar Farm

 

PART IV. Applications of Photocatalysis

 

Photocatalysis for Pollution Remediation

Biomimetic Photocatalytic Wastewater Treatment: From Lab-Scale to Commercial Operation

Preparation of Highly Functional TiO2-Based Thin Film Photocatalysts by Ion Engineering Techniques; Photocatalysis and Photo-Induced Super Hydrophilicity

The Surface-Related Photocatalysis and Superwettability


Prof. Xinchen Wang is currently the Vice President of Fuzhou University, Director of the State Key Laboratory of Photocatalysis on Energy and Environment as well as the Dean of College of Chemistry of Fuzhou University. He obtained his BSc and MSc at Fuzhou University and PhD at The Chinese University of Hong Kong. In 2006, he moved to The University of Tokyo as a JSPS fellow and then Max Planck Institute of Colloid and Interfaces as an Alexander von Humboldt fellow, and was promoted as a Group Leader during 2008-2012. He started his professorship in Fuzhou University at 2005. He is a pioneer in the research of the water splitting using g-C3N4 photocatalyst. His research interests cover catalysis and photocatalysis, and he published more than 250 peer-reviewed papers with H-index of 96.

Prof. Masakazu Anpo is presently a Special Honor Professor & International Advisor of the State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University. He worked for 40 years at Osaka Prefecture University and served as Dean, Vice President & Executive Director for the past 10 years and is now a Professor Emeritus. He is a pioneer in the research of photochemical reactions on solid surfaces, design of visible-light-responsive TiO2 photocatalysts, and single-site heterogeneous photocatalysts constructed within zeolites. He is the Editor-in-Chief of Res. Chem. Intermed. (Springer). He has published more than 100 books and 500 original peer-reviewed papers. He is a member of Academia Europaea and Science Council of Japan, and Honorary Fellow of Chinese Chemical Society.

Professor Xianzhi Fu received his Ph.D. degree in Physical Chemistry from Peking University, China, in 1991. He did postdoctoral research on catalysis and photocatalysis at Peking University and University of Wisconsin-Madison, respectively. He joined Fuzhou University in 1997 where he was promoted to a full professor in 1998. He is the President of Fuzhou University since 2012. He is a pioneer in the research of photocatalysis in China. His research interests are mainly focused on photocatalysis. He is the author or co-author of more than 350 peer-reviewed scientific publications and 40 patents. Professor Fu has won many important awards including the National Science and Technology Progress Award. He was elected as a member of the Chinese Academy of Engineering in 2009.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.